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Solution to Q1: Gamma Sample Generation

We use the standard routine rgamma in R language, which uses the following
method for generation of Gamma sample:

For α < 1. A rejection technique [1] is used based on the majoring function

g(x) = xα−1/Γ(α) if 0 < x ≤ 1; g(x) = e−x/Γ(α) if 1 ≤ x.

Since e−x ≤ 1 if 0 < x and xα−1 ≤ 1 if α ≤ 1 and 1 ≤ x the inequality
e−xxα−1/Γ(α) = f(x) ≤ g(x) is valid for all x > 0. The function

h(x) = xα−1ea/(e+ a) if 0 < x ≤ 1; h(x) = e−xea/(e+ a) if 1 ≤ x

is a probability density that is proportional to g(x). Sampling from h(x) is no
problem since both parts have easily invertible integrals: with a probability of
e/(e+ a) an x below 1 (first part of h(x)) is sampled, otherwise the second part of
h(x) is used. The rejection test is based on f(x)/g(x) which is e−x or xα−1.

For α ≥ 1. Ahrens and Dieter’s modified rejection method [2] is used.

Applying the transformation x = (
√
α− 1/2 + t/2)2, the resulting transformed

function g(t) is close to the standard normal density f(t). The mode of g(t) is
at t = 0, but g(0) is a little larger than f(0) = 1/

√
2π. Also, g(t) intersects

the standard normal density f(t) only once at some t = τ(a) < 0. Consequently,
g(t) ≥ f(t) for all t ≥ 0. This calls for the following modification of Von Neumann’s
acceptance-rejection technique:
Generate a standard normal deviate T [3]. If T ≥ 0, accept x = (

√
α− 1/2 +

T/2)2 as a gamma(α) sample. For T ≤ τ(α), where f(t) majorizes g(t), the
ratio r(T ) = g(T )/f(T ) can be compared with a (0, 1)-uniform deviate U for an
ordinary rejection test. (For simplicity this test is also applied when τ(a) < T < 0.
In this case r(t) > 1 and T is always accepted.) Obviously rejection occurs with
probability P (H) =

∫ τ
−∞(f(t) − g(t))dt =

∫∞
τ

(g(t) − f(t)). Hence, whenever a
negative T is rejected, it must be replaced with a new T ≥ τ(α), and this has
to be a sample from the difference distribution whose probability density function
is proportional to g(t) − f(t) in [τ,∞). Sampling from this difference is done by
means of a double-exponential hat.
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Solution to Q2: Maximum Likelihood Estimation of α

We use the standard routine fitdistr in R language, with BFGS method. For
Gamma distribution reasonable starting values for the iterative method can be
computed by the routine itself.

BFGS Method [4]. In Newtons method, we find the new iterate xk+1 as a func-
tion of xk as follows. For any point x define p = x − xk, the second order Taylor
expansion around xk is given by

mk(p) = fk + pT∇fk +
1

2
pTBkp

This defines a quadratic model of the function near the point xk . Its gradient
with respect to x is mk(p) = ∇fk +Bkp, and it is minimized at pk = −B−1k ∇fk.

Working with the inverse Hessian Hk in place of Bk, the secant equation becomes
Hkyk−1 = sk−1. The optimization is then : minimize ||H − Hk−1||W subject to
H = HT , Hyk−1 = sk−1, which has the unique solution

Hk = (I − pksk−1yTk−1)Hk−1(I − pk−1yk−1sTk−1) + sk−1pk−1s
T
k−1

where sk−1 = xk − xk−1, yk−1 = ∇fk − ∇fk−1, W is any matrix satisfying

Wyk−1 = sk−1, and ||H −Hk−1||W = ||W 1
2 (H −Hk−1)W

1
2 ||.

Each step of the BFGS method has the form

xk+1 = xk − αkHk∇fk, k = 0, 1, 2, . . .

where αk is computed from a line search procedure to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk,

∇f(xk + αkpk)
Tpk ≥ c2∇fTk pk

with 0 < c1 < c2 < 1.

Solution to Q3 & Q4: Results

The following graphs were plotted for values of MLE of α against the values of
α0, the parameter used for generation of sample. α0 ranges from .1 to 10 in steps
of .1, and for each value of α0, estimates for 20 samples are calculated. n is the
number of Gamma variates in a single sample.

Example outputs from different samples with α for α0 = 5:

n = 10 :
5.3144648(0.6950958); 4.5355942(0.6368612); 4.6917132(0.6489457);
5.743960(0.725238); 4.0315324(0.5962093); 5.2970827(0.6938487);
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n = 50 :
4.6669183(0.2893656); 4.6980724(0.2904354); 4.9866184(0.3001651);
4.7338926(0.2916606); 4.7629318(0.2926501); 4.927377(0.298193);
n = 100 :

5.4493586(0.2228456); 5.1090057(0.2151015); 5.5133350(0.2242719);
4.9219525(0.2107262); 5.2803015(0.2190328); 5.3109010(0.2197278);
n = 500 :

4.99358132(0.09499359); 5.15714169(0.09669357); 5.15428979(0.09666418);
5.11426871(0.09625083); 5.01874406(0.09525706); 4.95975300(0.09463824);

The quantities in brackets are the estimated standard errors due to numerical
optimization, which, we see, decrease as the sample size n is increased. Also, the
variance of the estimates is less for large sample sizes.
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And though we have different algorithms for sample generation for the cases
α0 < 1 and α0 ≥ 1, the sampling and estimation methods do not differentiate
between integer and non-integer α0 values, and the precision achieved is similar in
two cases.

For example, when n = 50 and α = 5.1:
5.3183637(0.3109812); 4.9230182(0.2980474); 4.8010873(0.2939454);
5.1262415(0.3047635); 5.3411929(0.3117119); 5.0274508(0.3015171);

Examples of generated Samples:
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Code for plots (in R language)

library(MASS)

n=50 #number of variates in each sample

alpha=.1*(1:100) #range of alpha for sample generation

s=20 #number of samples for each value of alpha

assign("x", c())

assign("y", c())

assign("z", c())

for (a in alpha)

for (i in 1:s) {

x <- c(x,(a))

y <- c(y,fitdistr(rgamma(n,(a)), "gamma", rate=1, method="BFGS"))

}

for (i in 1:(s*length(alpha))) z[i] = y[[5*i-4]]

plot(

x,z, type="l", main=expression(paste("MLE of ",alpha)),

sub=substitute(paste("n = ", n), list(n=n)),

xlab=expression(alpha[0]), ylab=expression(alpha)

)

Code for single estimation (in R language)

n=50 #number of variates in each sample

a=2 #value of alpha for generation of sample

fitdistr(rgamma(n,a), "gamma", rate=1, method="BFGS")
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