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Abstract

In these notes we cover the basics of Brownian motion and Ito’s Calculus.

1 Stochastic Processes

Definition 1 (Bownian Motion). A brownian motion is a stochastic process Wt≥0 such that the following
properties hold:

- W0 = 0 with probability 1.

- Wa −Wb ∼ N(0, |a− b|) where N(m, v) is a Normal distribution with mean m and variance v.

- Wa −Wb and Wc −Wd are independent random variables for a > b ≥ c > d.

With parameter t being the time, these properties mean that the process starts with 0 at time 0, and in
each time interval the value of the process changes stochastically by a normal distribution centered at 0 and
variance equal to the length of the time interval. Increments over two disjoint time intervals are independent.

Definition 2 (σ-Algebra). A σ-algebra on a set X is a collection Σ of subsets of X such that the following
properties hold:

- X ∈ Σ.

- A ∈ Σ⇒ Ac ∈ Σ (closed under complement)

- Ai ∈ Σ⇒
⋃
iAi ∈ Σ (closed under countable union)

In probability theory, probability is a map Σ→ R i.e. it assigns a probability number to each element of
the σ-algebra. Each element of the sigma algebra is an event of which we know the probability.

Definition 3 (Filtration). A filtration is an indexed σ-algebra Ft of subsets of the probability sample space
such that Fa k Fb for a ≥ b.

Filtration can be understood as information available at time t. The finer the sigma algebra the more
events we have there. The condition states that available information grows with time in the filtration.

Definition 4 (Measurable Function). Given a σ-algebra F on the sample space Ω, a real-valued random
variable X is F-measurable if the X-inverse of any open set in R is contained in F i.e.

{A ∈ Ω|X(A) ∈ (a, b)} ∈ F ∀a, b ∈ R a > b

This means that by observing the value of a measurable function we can point out an event in the sigma
algebra which contains all the points in the sample space that would have led to this outcome.

Definition 5 (Adapted Process). A stochastic process Xt is adapted to filtration Ft if for each t, Xt is Ft
measurable.

Informally this implies that given the information at time t (i.e. for each event E in Ft we know whether
the outcome is in E or not), Xt is known.
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Definition 6 (Generated Filtration). The filtration generated by a stochastic process is the smallest filtration
to which the process is adapted.

Example 1 Let’s take an example of 3 unbiased coin tosses with process Xt counting the number of
heads until toss t. The probability sample space Ω is

{{HHH}, {HHT}, {HTH}, {HTT}, {THH}, {THT}, {TTH}, {TTT}}

The filtration generated by the process is

F0 ={ {{HHH}, {HHT}, {HTH}, {HTT}, {THH}, {THT}, {TTH}, {TTT}}, (X0 = 0)

∅
}

F1 ={ {{HHH}, {HHT}, {HTH}, {HTT}}, (X0 = 0, X1 = 1)

{{THH}, {THT}, {TTH}, {TTT}}, (X0 = 0, X1 = 0)

∅
and all unions of the above

}
F2 ={ {{HHH}, {HHT}}, (X0 = 0, X1 = 1, X2 = 2)

{{HTH}, {HTT}}, (X0 = 0, X1 = 1, X2 = 1)

{{THH}, {THT}}, (X0 = 0, X1 = 0, X2 = 1)

{{TTH}, {TTT}}, (X0 = 0, X1 = 0, X2 = 0)

∅
and all unions of the above

}
F3 ={ {{HHH}}, (X0 = 0, X1 = 1, X2 = 2, X3 = 3)

{{HHT}}, (X0 = 0, X1 = 1, X2 = 2, X3 = 2)

{{HTH}}, (X0 = 0, X1 = 1, X2 = 1, X3 = 2)

{{HTT}}, (X0 = 0, X1 = 1, X2 = 1, X3 = 1)

{{THH}}, (X0 = 0, X1 = 0, X2 = 1, X3 = 2)

{{THT}}, (X0 = 0, X1 = 0, X2 = 1, X3 = 1)

{{TTH}}. (X0 = 0, X1 = 0, X2 = 0, X3 = 1)

{{TTT}}, (X0 = 0, X1 = 0, X2 = 0, X3 = 0)

∅
and all unions of the above

}

Definition 7 (Expectation conditional on filtration). EP[X|F ] is a F measurable random variable such that

EP[EP[X|F ]|A] = EP[X|A] ∀A ∈ F (1)

In the coin toss example above,

E[X3|F1](s) =

{
2 if s ∈ {{HHH}, {HHT}, {HTH}, {HTT}}
1 if s ∈ {{THH}, {THT}, {TTH}, {TTT}}
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Definition 8 (Martingale). A stochastic process Xt is a martingale with respect to a filtration Ft of the
probability space (Ω,F ,P) if

EP[Xa|Fb] = Xb for a ≥ b

Martingale property implies that expected value of the process at any future time a is equal to the value
at present time b.

Exercise. Show that in the coin toss example, if we had instead counted number of heads minus number of
tails, Xt would have been a martingale. For example, show that E[X3|F1] would have been equal to X1.

Definition 9 (Ft Brownian motion). A Brownian motion Wt is a Ft Brownian motion if Wt is adapted to
Ft and Wt+s −Wt is independent of Ft for s > 0.

Remark (An Ft Brownian motion is a martingale with respect to filtration Ft).

E[Wa|Fb] = E[Wa −Wb|Fb] + E[Wb|Fb]
= 0 + E[Wb|Fb]
= Wb

2 Ito Calculus

Definition 10 (Ito Integral). Let Ht be a Ft adapted process and Wt be a Ft Brownian motion. The Ito
integral is defined as ∫ t

0

HsdWs = lim
n→∞

2n−1∑
i=0

Hit/2n(W(i+1)t/2n −Wit/2n)

This is similar to the Riemann integral. One thing to note here is that the integrand always takes the
value at the start of the interval. If we make the integrand take the the average of the values at interval
endpoints, we get

Definition 11 (Stratonovich Integral).∫ t

0

Hs ◦ dWs = lim
n→∞

2n−1∑
i=0

(Hit/2n +Hit/2n)(W(i+1)t/2n −Wit/2n)/2 (2)

The two integrals usually do not give the same resutls, as can be checked by repeating the calculations
we do in these notes for Stratonovich integral as well.

In finance the integrand is usually the quantities of assets in the portfolio and the stochastic process
the price of these assets. When re-adjusting the portfolio for a specific time interval we can only use the
information available at the beginning of the time interval and therefore using Ito integral would be more
appropriate.

Let’s compute expectations and variances of some of the basic Ito Integrals. We assume that the integrand
is square-intregrable i.e.

∫ t
0
E[H2

s ]ds <∞. In this case we have
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Calculation (Expectation of Ito Integral).

E[

∫ t

0

HsdWs|F0] = E[ lim
n→∞

2n−1∑
i=0

Hit/2n(W(i+1)t/2n −Wit/2n)|F′] (by definition)

= lim
n→∞

2n−1∑
i=0

E[Hit/2n(W(i+1)t/2n −Wit/2n)|F0] (by square integrability of Hs)

= lim
n→∞

2n−1∑
i=0

E[E[Hit/2n(W(i+1)t/2n −Wit/2n)|Fit/2n ]|F0] (iterated conditioning)

= lim
n→∞

2n−1∑
i=0

E[Hit/2nE[(W(i+1)t/2n −Wit/2n)|Fit/2n ]|F0] (Hs is adapted to Fs)

= lim
n→∞

2n−1∑
i=0

E[Hit/2n0|F0] (Ws is Fs Brownian)

= 0

By iterated conditioning we also have E[
∫ t

0
HsdWs] = E[E[

∫ t
0
HsdWs|F0]] = E[0] = 0.
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Calculation (Covariance of Ito Integral).

E[

∫ t

0

HsdWs

∫ t

0

KsdWs|F0]

= E[ lim
n,m→∞

2n−1,2m−1∑
i,j=0

Hit/2n(W(i+1)t/2n −Wit/2n)Kjt/2m(W(j+1)t/2m −Wjt/2m)|F0]

(by definition)

= lim
n,m→∞

2n−1,2m−1∑
i,j=0

E[Hit/2n(W(i+1)t/2n −Wit/2n)Kjt/2m(W(j+1)t/2m −Wjt/2m)|F0]

(by square integrability of Hs)

= lim
n,m→∞

2n−1,2m−1∑
i,j=0

E[E[Hit/2n(W(i+1)t/2n −Wit/2n)Kjt/2m(W(j+1)t/2m −Wjt/2m)|Fmax(i,j)t/2n ]|F0]

(iterated conditioning)

= lim
n→∞

2n−1∑
i,j=0

E[E[Hit/2n(W(i+1)t/2n −Wit/2n)Kjt/2n(W(j+1)t/2n −Wjt/2n)|Fmax(i,j)t/2n ]|F0]

(assuming same partition to simplify algebra)

= lim
n→∞

2n−1∑
i,j=0


E[Hit/2nKjt/2n(W(j+1)t/2n −Wjt/2n)E[(W(i+1)t/2n −Wit/2n)|Fit/2n ]|F0] if i > j

E[Hit/2nKit/2nE[(W(i+1)t/2n −Wit/2n)(W(i+1)t/2n −Wit/2n)|Fit/2n ]|F0] if i = j

E[Hit/2n(W(i+1)t/2n −Wit/2n)Kjt/2nE[(W(j+1)t/2n −Wjt/2n)|Fjt/2n ]|F0] if i < j

= lim
n→∞

2n−1∑
i,j=0


E[Hit/2nKjt/2n(W(j+1)t/2n −Wjt/2n)0|F0] if i > j

E[Hit/2nKit/2nVar[W(i+1)t/2n −Wit/2n |Fit/2n ]|F0] if i = j

E[Hit/2n(W(i+1)t/2n −Wit/2n)Kjt/2n0|F0] if i < j

= lim
n→∞

2n−1∑
i,j=0

{
0 if i 6= j

E[Hit/2nKit/2nt/2n|F0] if i = j

= lim
n→∞

2n−1∑
i=0

E[Hit/2nKit/2n |F0]

= E[ lim
n→∞

2n−1∑
i=0

Hit/2nKit/2n |F0]

= E[

∫ t

0

HsKsds|F0]

Remark (Ito Isometry). The above result is known as Ito isometry. Let I(X) =
∫ t

0
XsdWs i.e. the

Ito intregration. Then Ito Integration can be seen as a map from L2
ad([0, t] × Ω) to L2(Ω) such that the

inner product is preserved i.e. (I(H), I(K))L2(Ω) = (H,K)L2
ad([0,t]×Ω) where (X,Y )L2(Ω) ≡ E[XY ] and

(X,Y )L2
ad([0,t]×ω) ≡ E[

∫ t
0
XtYtdt].

With H = K, the above two results imply

E[

∫ t

0

HsdWs] = 0

Var[

∫ t

0

HsdWs] = E[

∫ t

0

H2
sds].
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One key feature of Ito calulus is that the second order differentials are not equivalent to 0. In ordinary
calculus we have ∫ t

0

X(t)(dt)2 ≡ lim
n→∞

2n−1∑
i=0

X(it/2n)((i+ 1)t/2n − it/2n)2

= lim
n→∞

2n−1∑
i=0

X(it/2n)(t/2n)2

≤ max
0<s<t

(X(s)) lim
n→∞

2n−1∑
i=0

(t/2n)2

≤ max
0<s<t

(X(s))t lim
n→∞

2n−1∑
i=0

(t/2n)

= 0

In stochastic calculus we can check the expectation and variance of the distribution of the integral:

Calculation (Integral of second order time differential).

E[

∫ t

0

Xt(dt)
2] ≡ E[ lim

n→∞

2n−1∑
i=0

Xit/2n((i+ 1)t/2n − it/2n)2]

= lim
n→∞

2n−1∑
i=0

E[Xit/2n ](t/2n)2

≤ max
0<s<t

(|E[Xs]|) lim
n→∞

2n−1∑
i=0

(t/2n)2

≤ max
0<s<t

(|E[Xs]|)t lim
n→∞

2n−1∑
i=0

(t/2n)

= 0

Variance can be similarly computed to be 0 if the stochastic process has finite mean and variance at all
times. Therefore the distrubution is 0 with probability 1.

However the integral does not necessarily vanish when taken with respect to second order differential of
Brownian motion. We have
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Calculation (Expectation of integral of second order Brownian motion differential).

E[

∫ t

0

Hs(dWs)
2|F0] = E[ lim

n→∞

2n−1∑
i=0

Hit/2n(W(i+1)t/2n −Wit/2n)2|F′]

= lim
n→∞

2n−1∑
i=0

E[Hit/2n(W(i+1)t/2n −Wit/2n)2|F0]

= lim
n→∞

2n−1∑
i=0

E[E[Hit/2n(W(i+1)t/2n −Wit/2n)2|Fit/2n ]|F0]

= lim
n→∞

2n−1∑
i=0

E[Hit/2nE[(W(i+1)t/2n −Wit/2n)2|Fit/2n ]|F0]

= lim
n→∞

2n−1∑
i=0

E[Hit/2nt/2n|F0]

= E[

∫ t

0

Hsdt|F0]

We therefore have E[
∫ t

0
Hs(dWs)

2 −
∫ t

0
Hsdt] = 0. So the two integrals have same expectation. Let’s see

if their difference has any variance.
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Calculation (Variance of integral of second order Brownian motion differential).

E[
( ∫ t

0

Hs(dWs)
2 −

∫ t

0

Hsdt
)2|F0]

= E[ lim
n→∞

( 2n−1∑
i=0

Hit/2n(W(i+1)t/2n −Wit/2n)2 − ((i+ 1)t/2n − it/2n)
)2|F0]

= E[ lim
n→∞

( 2n−1∑
i=0

Hit/2n(W(i+1)t/2n −Wit/2n)2 − t/2n
)2|F0]

= E[ lim
n→∞

2n−1∑
i,j=0

Hit/2nHjt/2n((W(i+1)t/2n −Wit/2n)2 − t/2n)((W(j+1)t/2n −Wjt/2n)2 − t/2n)|F0]

= lim
n→∞

2n−1∑
i,j=0

E[Hit/2nHjt/2n((W(i+1)t/2n −Wit/2n)2 − t/2n)((W(j+1)t/2n −Wjt/2n)2 − t/2n)|F0]

= lim
n→∞

2n−1∑
i,j=0

E[E[Hit/2nHjt/2n((W(i+1)t/2n −Wit/2n)2 − t/2n)((W(j+1)t/2n −Wjt/2n)2 − t/2n)|Fmax(i,j)t/2n ]|F0]

= lim
n→∞

2n−1∑
i,j=0


E[Hit/2nHjt/2n(W(j+1)t/2n −Wjt/2n)2 − t/2n)E[(W(i+1)t/2n −Wit/2n)2 − t/2n|Fit/2n ]|F0] if i > j

E[(Hit/2n)2E[((W(i+1)t/2n −Wit/2n)2 − t/2n)2|Fit/2n ]|F0] if i = j

E[Hit/2nHjt/2n(W(i+1)t/2n −Wit/2n)2 − t/2n)E[(W(j+1)t/2n −Wjt/2n)2 − t/2n|Fjt/2n ]|F0] if i < j

= lim
n→∞

2n−1∑
i,j=0


E[Hit/2nHjt/2n(W(j+1)t/2n −Wjt/2n)2 − t/2n)0|F0] if i > j

E[(Hit/2n)2E[(W(i+1)t/2n −Wit/2n)4 + (t/2n)2 − 2(W(i+1)t/2n −Wit/2n)2t/2n|Fit/2n ]|F0] if i = j

E[Hit/2nHjt/2n(W(i+1)t/2n −Wit/2n)2 − t/2n)0|F0] if i < j

= lim
n→∞

2n−1∑
i,j=0

{
0 if i 6= j

E[(Hit/2n)2(3(t/2n)2 + (t/2n)2 − 2(t/2n)2)|F0] if i = j

= lim
n→∞

2n−1∑
i=0

E[(Hit/2n)2(2(t/2n)2)|F0]

=

∫ t

0

2E[(Hs)
2|F0](dt)2

= 0

We therefore have E[
∫ t

0
Hs(dWs)

2 −
∫ t

0
Hsdt] = 0 and Var[

∫ t
0
Hs(dWs)

2 −
∫ t

0
Hsdt] = 0 and therefore

P(
∫ t

0
Hs(dWs)

2 =
∫ t

0
Hsdt) = 1 i.e.∫ t

0

Hs(dWs)
2 =

∫ t

0

Hsdt almost surely

Remark (Ito Differentials). The above result is also written in differential notation as (dW )2 = dt. We can
similarly check that dtdW = 0 and (dW )3 = 0. Therefore we have the algebra on differentials:

(dt)2 = 0

(dW )2 = dt

From the ordinary calculus we have the Taylor expansion of a function as

f((x) + δx) = f(x) + f ′(x) · δx+
1

2
(δx)T · f ′′ · δx+ . . .
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where f ′ is the gradient and f ′′ is the Hessian. When taking the limit δx→ dx we often ignore the second
and higher order differentials (dx)2, (dx)3, . . . giving the usual chain rule. In stochastic calculus, however, as
we have seen second order differenials need not be 0. And we have:

Remark (Ito’s Lemma).
df(x) = f ′(x) · dx+ (dx)T · f ′′ · dx (3)

and in the special case when f is a function of t and a stochastic process Xt.

df(t,Xt) =
∂f

∂t
dt+

∂f

∂Xt
dXt +

1

2

∂2f

∂X2
t

(dXt)
2

and when Xt is a brownian motion Wt we have

df(t,Xt) =
(∂f
∂t

+
1

2

∂2f

∂W 2
t

)
dt+

∂f

∂Wt
dWt

Definition 12 (Ito Diffusion). An Ito diffusion is a stochastic process satisying a stochastic differential
equation of the form

dXt = µ(t,Xt)dt︸ ︷︷ ︸
drift

+σ(t,Xt) · dW t︸ ︷︷ ︸
diffusion

(4)

The diffusion coefficient in the equation above is also known as volatility.

Definition 13 (Local Martingale). An Ito diffusion with zero drift is a local martingale

dXt = σ(t,Xt) · dW t

Example 2 Geometric Brownian Motion

dXt

Xt
= µdt+ σdWt (5)

d(log(Xt) =
dXt

Xt
− 1

2

1

X2
t

(dXt)
2 (by Ito’s Lemma)

= µdt+ σdWt −
1

2
σ2dt

=
(
µ− 1

2
σ2
)
dt+ σdWt

log(Xt)− log(X0) =

∫ t

0

(
µ− 1

2
σ2
)
ds+ σdWs

=
(
µ− 1

2
σ2
)
t+ σWt

Xt = X0e
(µ− 1

2σ
2)t+σWt

Because of its simplicity Geometric Brownian Motion has been widely used in finance as a model for
evolution of stock prices.
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