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Abstract

In these notes we price an option contract using the no-arbitrage pricing theory.

1 Black Scholes Option Pricing

Definition 1 (Black Scholes Model). Black Scholes model is model for the market where the risk-free interest
rate 1 is constant and tradable asset price process follows Geometric Brownian motion i,e.
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We assume that the no-arbitrage condition holds in the market and that there is a risk neutral probability
measure P such that discounted asset process is a local martingale under this measure.
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Therefore we have p = r.
We know the solution to the Geometric Brownian motion
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Let’s consider a call option on the stock S with expiration at time T and strike K. The value of this
option at time T is
VT = max(ST - K, 0)
From the no-arbitrage pricing theory we have D.V; is a local martinage and under bounded regularity
conditions we have
DV, = E¥[DpVp|F (1)

i.e. D;V; is a martingale.
Solving we have,
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Denoting 7 =T —t and dy = # [log(sﬁt) — (r — 30?)7], we have
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where N is the cumulative distribution function of the standard normal distribution.



