Numeraires

Sarthak Bagaria

September 9, 2019

Abstract

In these notes we introduce numeraires and theorems related to change of numeraires along with their applications.

1 Change of Measure

Definition 1 (Radon-Nikodym Derivative). Consider two equivalent probability measures \mathbb{P} and $\hat{\mathbb{P}}$ on a measurable space (Ω, Σ) . The Radon-Nikodym derivate $d\hat{\mathbb{P}}/d\mathbb{P} : \Omega \to \mathbb{R}$ is defined such that for any subset $A, \Omega \supseteq A \in \Sigma$,

$$\int_{A} d\hat{\mathbb{P}} = \int_{A} (d\hat{\mathbb{P}}/d\mathbb{P}) d\mathbb{P}.$$
(1)

Suppose $(\Omega, \mathcal{F}, \mathcal{F}_t)$ is a filtered probability space, then note from the above definition we have

$$(d\hat{\mathbb{P}}/d\mathbb{P})|_{\mathcal{F}_t} = \mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})|\mathcal{F}_t]$$
⁽²⁾

 $(d\hat{\mathbb{P}}/d\mathbb{P})|_{\mathcal{F}_t}$ is also written as $(d\hat{\mathbb{P}}/d\mathbb{P})_t$ and is thus a martingale stochastic process (by iterated conditioning) in \mathbb{P} .

Example 1 Let's consider a simple example to better understand Radom Nikodym derivative. Consider a die roll. We can assign mulitple probability distributions to the outcomes.

ω	\mathbb{P}	Ê	$d\hat{\mathbb{P}}/d\mathbb{P}$
1	1/6	1/2	3
2	1/6	1/4	3/2
3	1/6	1/8	3/4
4	1/6	1/16	3/8
5	1/6	1/32	3/16
6	1/6	1/32	3/16

The probability in $\hat{\mathbb{P}}$ of getting an odd number is $\int_{\omega \in \{1,3,5\}} d\hat{\mathbb{P}} = 1/2 + 1/8 + 1/32 = 21/32 = 3 * 1/6 + 3/4 * 1/6 + 3/16 * 1/6 = \int_{\omega \in \{1,3,5\}} (d\hat{\mathbb{P}}/d\mathbb{P}) d\mathbb{P}$

Theorem 2 (Abstract Bayes' Theorem). Let \mathbb{P} and $\hat{\mathbb{P}}$ be two measures on measurable space (Ω, \mathcal{F}) . Let $\mathcal{G} \subset \mathcal{F}$ be another sigma algebra on Ω . Then for any $A \in G$ and random variable X

$$\mathbb{E}^{\hat{\mathbb{P}}}[X|G] = \frac{\mathbb{E}^{\mathbb{P}}[(d\mathbb{P}/d\mathbb{P})X|G]}{\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})|G]}.$$
(3)

Proof. We show that for any $A \in G$

$$\mathbb{E}^{\mathbb{P}}[X|G]\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})|G] = \mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})X|G]$$

Since the random variables involved are constant over A, we can check equality on integrals over A.

$$\begin{split} \int_{A} \mathbb{E}^{\hat{\mathbb{P}}} [X|G] \mathbb{E}^{\mathbb{P}} [(d\hat{\mathbb{P}}/d\mathbb{P})|G] d\mathbb{P} &= \int_{A} \mathbb{E}^{\mathbb{P}} [(d\hat{\mathbb{P}}/d\mathbb{P}) \mathbb{E}^{\hat{\mathbb{P}}} [X|G] |G] d\mathbb{P} & (\mathbb{E}^{\hat{\mathbb{P}}} [X|G] \text{ is G measurable}) \\ &= \int_{A} (d\hat{\mathbb{P}}/d\mathbb{P}) \mathbb{E}^{\hat{\mathbb{P}}} [X|G] d\mathbb{P} & (\text{definition of conditional expectation}) \\ &= \int_{A} \mathbb{E}^{\hat{\mathbb{P}}} [X|G] d\hat{\mathbb{P}} & (\text{definition of Radon Nikodym derivative}) \\ &= \int_{A} X d\hat{\mathbb{P}} & (\text{definition of conditional expectation}) \\ &= \int_{A} (d\hat{\mathbb{P}}/d\mathbb{P}) X d\mathbb{P} & (\text{definition of Radon Nikodym derivative}) \\ &= \int_{A} \mathbb{E}^{\mathbb{P}} [(d\hat{\mathbb{P}}/d\mathbb{P}) X |G] d\mathbb{P} & (\text{definition of conditional expectation}). \end{split}$$

Remark. Taking $X = V_T$ where V_s is \mathcal{F}_s adapted and $G = \mathcal{F}_t$ for t < T in the above theorem, we get the very useful formula for measure change for conditional expectations on filtered spaces,

$$\mathbb{E}^{\hat{\mathbb{P}}}[V_T|\mathcal{F}_t] = \mathbb{E}^{\mathbb{P}}[\frac{(d\mathbb{P}/d\mathbb{P})_T}{(d\hat{\mathbb{P}}/d\mathbb{P})_t}V_T|\mathcal{F}_t]$$
(4)

Proof.

$$\begin{split} \mathbb{E}^{\hat{\mathbb{P}}}[V_T|\mathcal{F}_t] &= \frac{\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})V_T|\mathcal{F}_t]}{\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})|\mathcal{F}_t]} \qquad \text{(abstract Bayes' theorem)} \\ &= \frac{\mathbb{E}^{\mathbb{P}}[\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})V_T|\mathcal{F}_T]|\mathcal{F}_t]}{\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})|\mathcal{F}_T]V_T|\mathcal{F}_t]} \qquad \text{(iterated conditioning)} \\ &= \frac{\mathbb{E}^{\mathbb{P}}[\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})|\mathcal{F}_T]V_T|\mathcal{F}_t]}{\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})|\mathcal{F}_t]} \qquad (V_T \text{ is } \mathcal{F}_T \text{ measureable}) \\ &= \frac{\mathbb{E}^{\mathbb{P}}[(d\hat{\mathbb{P}}/d\mathbb{P})_TV_T|\mathcal{F}_t]}{(d\hat{\mathbb{P}}/d\mathbb{P})_t} \qquad (\text{martigale property of Radon Nikodym derivative}) \\ &= \mathbb{E}^{\mathbb{P}}[\frac{(d\hat{\mathbb{P}}/d\mathbb{P})_T}{(d\hat{\mathbb{P}}/d\mathbb{P})_t}V_T|\mathcal{F}_t]} \qquad ((d\hat{\mathbb{P}}/d\mathbb{P})_t \text{ is } \mathcal{F}_t \text{ measurable}). \end{split}$$

We consider processes until terminal time S i.e. $\mathcal{F} = \mathcal{F}_S$ and $(d\hat{\mathbb{P}}/\mathbb{P}) = (d\hat{\mathbb{P}}/\mathbb{P})_S$. We take a strictly positive martingale process to be the Random Nikodym derivative:

$$df_t = f_t \sigma(t) dW_t; \ f_t = e^{-\int_0^t \frac{1}{2} \sigma^2(s) ds + \int_0^t \sigma(s) dW_s}.$$
(5)

Theorem 3 (Girsanov Theorem). If $W_{1,t}$ is a Brownian motion in \mathbb{P} and the Radon-Nikodym derivative $(d\hat{\mathbb{P}}/d\mathbb{P})_t = f_t$ is given by $f_t = e^{-\int_0^t \frac{1}{2}\sigma^2(s)ds + \int_0^t \sigma(s)dW_{2,s}^{\mathbb{P}}}$ then $W_t - \int_0^t \sigma(s)dW_{1,s}dW_{2,s}$ is a Brownian motion in $\hat{\mathbb{P}}$.

Proof. We show that $X_t = W_{1,t} - \int_0^t \sigma(s) dW_{1,s} dW_{2,s}$ follows normal distribution with mean 0 and variance t in $\hat{\mathbb{P}}$. Other required properties can be verified easily. We show that the moment generating function of

 X_t is same as that of normal distribution with mean 0 and variance t.

$$\mathbb{E}^{\mathbb{P}}[e^{-yX_{t}}] = \mathbb{E}^{\mathbb{P}}[(d\mathbb{P}/d\mathbb{P})_{t}e^{-yX_{t}}]$$

$$= \mathbb{E}^{\mathbb{P}}[e^{-\int_{0}^{t}\frac{1}{2}\sigma^{2}(s)ds + \int_{0}^{t}\sigma(s)dW_{2,s}}e^{-yX_{t}}]$$

$$= e^{-\int_{0}^{t}\frac{1}{2}\sigma^{2}(s)ds}\mathbb{E}^{\mathbb{P}}[e^{\int_{0}^{t}\sigma(s)dW_{2,s}}-yX_{t}]$$

$$= e^{-\int_{0}^{t}\frac{1}{2}\sigma^{2}(s)ds}\mathbb{E}^{\mathbb{P}}[e^{\int_{0}^{t}\sigma(s)dW_{2,s}}-y(W_{1,t}-\int_{0}^{t}\sigma(s)dW_{1,s}dW_{2,s})]$$

$$= e^{-\int_{0}^{t}\frac{1}{2}\sigma^{2}(s)ds}\mathbb{E}^{\mathbb{P}}[e^{\int_{0}^{t}(\sigma(s)dW_{2,s}}-ydW_{1,s}+y\sigma(s)dW_{1,s}dW_{2,s})]$$

Define the martingale $Z_{y,t} = \int_0^t (\sigma(s)dW_{2,s} - ydW_{1,s})$. Then $e^{Z_{y,t} - \frac{1}{2}\int_0^t dZ_{y,s}dZ_{y,s}}$ is a martingale as well, with

$$dZ_{y,s}dZ_{y,s} = (\sigma^2(s) + y^2)ds - 2y\sigma dW_{1,s}dW_{2,s}$$

We then have

$$\mathbb{E}^{\hat{\mathbb{P}}}[e^{-yX_t}] = e^{-\int_0^t \frac{1}{2}\sigma^2(s)ds} \mathbb{E}^{\mathbb{P}}[e^{Z_{y,t} - \frac{1}{2}\int_0^t dZ_{y,s}dZ_{y,s} + \frac{1}{2}\int_0^t (\sigma^2(s) + y^2)ds}]$$

= $e^{\frac{1}{2}y^2t} \mathbb{E}^{\mathbb{P}}[e^{Z_{y,t} - \frac{1}{2}\int_0^t dZ_{y,s}dZ_{y,s}}]$
= $e^{\frac{1}{2}y^2t}(e^{Z_{y,t} - \frac{1}{2}\int_0^t dZ_{y,s}dZ_{y,s}})|_{t=0}$
= $e^{\frac{1}{2}y^2t}.$

2 Numeraires

Definition 4 (Numeraire). A Numeraire is a strictly positive price process of a tradable relative to which prices of all other tradables are expressed.

A savings account which earns interest at the instantaneous interest rate can be taken as a numeraire. The value of the savings account at any point is given by

$$A_t = e^{\int_0^t r(t)dt} = 1/D(t)$$
(6)

where D(t) is the discount factor.

The fact that discounted trade prices are martingales in risk-neutral measure can then also be stated as: tradable prices in savings account (or money market) numeraire are martingales.

Consider another numeraire N_t . Since the numeraire is itself a price process, $D_t N_t$ is a martingale and we can take it as a Radon-Nikodym derivative, with a suitable normalization so that $\mathbb{E}^{\mathbb{P}}[(d\mathbb{N}/d\mathbb{P})] = 1$, giving

$$\mathbb{E}^{\mathbb{N}}\left[\frac{X_T}{N_T}|\mathcal{F}_t\right] = \mathbb{E}^{\mathbb{P}}\left[\frac{(d\mathbb{N}/d\mathbb{P})_T}{(d\mathbb{N}/d\mathbb{P})_t}\frac{X_T}{N_T}|\mathcal{F}_t\right] = \mathbb{E}^{\mathbb{P}}\left[\frac{D_T N_T}{D_t N_t}\frac{X_T}{N_T}|\mathcal{F}_t\right] = \frac{1}{D_t N_t}\mathbb{E}^{\mathbb{P}}\left[D_T X_T|\mathcal{F}_t\right] = \frac{X_t}{N_t}$$
(7)

where \mathbb{P} is the risk neutral measure and \mathbb{N} is the measure corresponding to the numeraire N_t .

Remark. The above equation shows that tradable prices with respect to a numeraire are martingales in the measure corresponding to the numeraire.

Risk neutral measure corresponds to the savings account (or money market) numeraire.

Definition 5 (T-forward measure). If we take N_t to be the price of a riskless bond maturing at time T, the corresponding measure as the T-forward measure.

$$X_t/B(t,T) = \mathbb{E}^T[X_T/B(T,T)] = \mathbb{E}^T[X_T]$$
(8)

We see that that expectation of X_T in the T-forward measure gives the forward price $X_t/B(t,T)$ of the trade with expiration date T, hence the name T-forward measure. From the above equation we also notice that expiration T forward price process on an asset is martingale in T-forward measure.

Example 2 Option Pricing To see how measure changes can be used in pricing, let's take the example of Black Scholes option pricing. For an option on stock with expiry at T and strike K, we have the valuation forumula

$$V_t = \frac{1}{D_t} \mathbb{E}^{\mathbb{P}}[D_T \max(S_T - K, 0) | \mathcal{F}_t]$$

where \mathbb{P} is the risk neutral probability measure, D_t is the discount factor and S_t is the stock price which follows the Black Scholes diffusion

$$\frac{dS_t}{S_t} = rdt + \sigma dW_t$$

where r is the riskfree interest rate and W_t is a Brownian motion in \mathbb{P} .

Denote by $\mathbb{I}_{S_T > K}$ the indicator variable which takes value 1 is $S_T > K$ and 0 otherwise. We then have

$$V_t = \frac{1}{D_t} \mathbb{E}^{\mathbb{P}} [D_T \mathbb{I}_{S_T > K} (S_T - K) | \mathcal{F}_t]$$

= $\frac{1}{D_t} \mathbb{E}^{\mathbb{P}} [D_T \mathbb{I}_{S_T > K} S_T | \mathcal{F}_t] - \frac{1}{D_t} \mathbb{E}^{\mathbb{P}} [D_T \mathbb{I}_{S_T > K} K | \mathcal{F}_t]$

Taking S to be the measure corresponding to stock price as numeraire, and taking T to be the measure corresponding to T-expiry bond as numeraire, we have

$$\begin{split} V_t &= \frac{1}{D_t} \mathbb{E}^{\mathbb{S}} [D_T \frac{(d\mathbb{P}/d\mathbb{S})_T}{(d\mathbb{P}/d\mathbb{S})_t} \mathbb{I}_{S_T > K} S_T | \mathcal{F}_t] - \frac{1}{D_t} \mathbb{E}^{\mathbb{T}} [D_T \frac{(d\mathbb{P}/d\mathbb{T})_T}{(d\mathbb{P}/d\mathbb{T})_t} \mathbb{I}_{S_T > K} K | \mathcal{F}_t] \\ &= \frac{1}{D_t} \mathbb{E}^{\mathbb{S}} [D_T \frac{(d\mathbb{S}/d\mathbb{P})_t}{(d\mathbb{S}/d\mathbb{P})_T} \mathbb{I}_{S_T > K} S_T | \mathcal{F}_t] - \frac{1}{D_t} \mathbb{E}^{\mathbb{T}} [D_T \frac{(d\mathbb{T}/d\mathbb{P})_t}{(d\mathbb{T}/d\mathbb{P})_T} \mathbb{I}_{S_T > K} K | \mathcal{F}_t] \\ &= \frac{1}{D_t} \mathbb{E}^{\mathbb{S}} [D_T \frac{D_t S_t}{D_T S_T} \mathbb{I}_{S_T > K} S_T | \mathcal{F}_t] - \frac{1}{D_t} \mathbb{E}^{\mathbb{T}} [D_T \frac{D_t (B(t,T))}{D_T B(T,T)} \mathbb{I}_{S_T > K} K | \mathcal{F}_t] \\ &= S_t \mathbb{E}^{\mathbb{S}} [\mathbb{I}_{S_T > K} | \mathcal{F}_t] - K B(t,T) \mathbb{E}^{\mathbb{T}} [\mathbb{I}_{S_T > K} | \mathcal{F}_t] \end{split}$$

where B(t,T) is the bond price with the diffusion

$$dB(t,T)/B(t,T) = rdt + \sigma_2 dW_{2,t}$$

where $W_{2,t}$ is another Brownian motion in \mathbb{P} such that $dW_t dW_{2,t} = \rho dt$.

Using Girsaonov's theorem, we have

$$\frac{dS_t}{S_t} = rdt + \sigma(dW_t^{\mathbb{S}} + \sigma dt) = rdt + \sigma(dW_t^{\mathbb{T}} + \sigma_2\rho dt)$$
(9)

where $dW_t^{\mathbb{S}} = dW_t - \sigma dt$ is a Brownian motion in \mathbb{S} and $dW_t^{\mathbb{T}} = dW_t^{\mathbb{S}} - \sigma_2 \rho dt$ is a Brownian motion in \mathbb{T} . Rearranging,

$$\frac{dS_t}{S_t} = (r + \sigma^2)dt + \sigma dW_t^{\mathbb{S}} = (r + \sigma\sigma_2\rho)dt + \sigma dW_t^{\mathbb{T}}$$
(10)

$$S_T = S_t e^{(r + \frac{1}{2}\sigma^2)\tau + \sigma W_\tau^{\mathbb{S}}} = S_t e^{(r + \sigma(\sigma_2\rho - \frac{1}{2}\sigma)\tau + \sigma W_\tau^{\mathbb{T}}}$$
(11)

where $\tau = T - t$.

$$\begin{split} \mathbb{E}^{\mathbb{S}}[\mathbb{I}_{S_T > K} | \mathcal{F}_t] &= \mathbb{E}^{\mathbb{S}}[\mathbb{I}_{S_t e^{(r+\frac{1}{2}\sigma^2)\tau + \sigma W_{\tau}^{\mathbb{S}} > K}} | \mathcal{F}_t] \\ &= \mathbb{E}^{\mathbb{S}}[\mathbb{I}_{(r+\frac{1}{2}\sigma^2)\tau + \sigma W_{\tau}^{\mathbb{S}} > \log(K/S_t)} | \mathcal{F}_t] \\ &= \mathbb{E}^{\mathbb{S}}[\mathbb{I}_{\sigma W_{\tau}^{\mathbb{S}} > \log(K/S_t) - (r+\frac{1}{2}\sigma^2)\tau} | \mathcal{F}_t] \\ &= \mathbb{E}^{\mathbb{S}}[\mathbb{I}_{\frac{1}{\sqrt{\tau}} W_{\tau}^{\mathbb{S}} > \frac{1}{\sigma\sqrt{\tau}} (\log(K/S_t) - (r+\frac{1}{2}\sigma^2)\tau)}) | \mathcal{F}_t] \\ &= N(-\frac{1}{\sigma\sqrt{\tau}} (\log(K/S_t) - (r+\frac{1}{2}\sigma^2)\tau)) \\ &= N(-d_1 + \sigma\sqrt{\tau}) \end{split}$$

where N is the cumulative normal distribution, and $d_1 = \frac{1}{\sigma\sqrt{\tau}} (\log(K/S_t) - (r - \frac{1}{2}\sigma^2)\tau)$. Similarly we have,

$$\mathbb{E}^{\mathbb{T}}[\mathbb{I}_{S_T > K} | \mathcal{F}_t] = \mathbb{E}^{\mathbb{T}}[\mathbb{I}_{S_t e^{(r+\sigma(\sigma_2\rho - \frac{1}{2}\sigma)\tau + \sigma W^{\mathbb{S}}_{\tau} > K} | \mathcal{F}_t]$$

$$= \mathbb{E}^{\mathbb{T}}[\mathbb{I}_{(r+\sigma(\sigma_2\rho - \frac{1}{2}\sigma)\tau + \sigma W^{\mathbb{S}}_{\tau} > \log(K/S_t)} | \mathcal{F}_t]$$

$$= \mathbb{E}^{\mathbb{T}}[\mathbb{I}_{\sigma W^{\mathbb{S}}_{\tau} > \log(K/S_t) - (r+\sigma(\sigma_2\rho - \frac{1}{2}\sigma)\tau} | \mathcal{F}_t]$$

$$= \mathbb{E}^{\mathbb{T}}[\mathbb{I}_{\frac{1}{\sqrt{\tau}}W^{\mathbb{S}}_{\tau} > \frac{1}{\sigma\sqrt{\tau}}(\log(K/S_t) - (r+\sigma(\sigma_2\rho - \frac{1}{2}\sigma)\tau)} | \mathcal{F}_t]$$

$$= N(-\frac{1}{\sigma\sqrt{\tau}}(\log(K/S_t) - (r+\sigma(\sigma_2\rho - \frac{1}{2}\sigma)\tau))$$

$$= N(-d_1 + \sigma_2\rho\sqrt{\tau}))$$

And finally we have,

$$V_t = S_t N(-d_1 + \sigma \sqrt{\tau}) - KB(t, T)N(-d_1 + \sigma_2 \rho \sqrt{\tau})$$

Note that $\sigma d\tau$ and $\sigma_2 \rho d\tau$ are the drift correction terms we get to stock price Brownian motion using Girsanov's theorem to change measure to stock and bond numeraires respectively.