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Abstract

In this report we discuss the fidelity and the rate at which we can retrieve the information that was
thrown into a black hole. The analysis is based on the paper by Preskill and Hayden [1].

1 Introduction

The question we look into is that if Alice throws a k-qubit quantum information M into a black hole H, can
Bob tell what the information was by looking at the Hawking radiation, given that Bob holds a quantum
memory that is perfectly correlated with the previously emitted Black Hole radiation E. We assume the
black hole dynamics to be unitary and rapidly mixing. Also, consider a reference system N which is initially
maximally entangled with M. By retrieving information of M from the black hole, we mean extracting a
subsystem of size |M | which is maximally entangled with N, so that Bob can do anything with it that he
would have been able to do with M before Alice threw it into the black hole.

Just after Alice throws the information into the black hole, the system B (= HM) is transformed by a
unitary transformation V B chosen uniformly with respect to a Haar measure. After some time, the black
hole is in state B’ and has radiated system R which Bob observes.

Remark (Haar measure). A complex vector in Cn may be represented using a vector in R2n. Unitary
transformations preserve the length of this vector and hence keep it within an S2n−1 subspace of R2n. Haar
measure corresponds to the measure being rotationally invariant on this sphere. The expected density matrix
of pure state chosen uniformly using a Haar measure is a maximally mixed state.

2 Entanglement in Black Holes

Consider first the entanglement between H and E [2]. When the black hole is just formed, |E| << |H| and
the radiation E is maximally entangled with the black hole state H. As the evaporation proceeds, log |H|
declines to half it’s value and soon after |H| << |E|. The black hole state H is then maximally entangled
with radiation E.

We now give a proof of the above [3]. Consider a bipartite pure state |ψ〉 composed of subsystems
A and B. The state is chosen uniformly with respect to a Haar measure. Consider the flip operator F :
F(|ϕi〉 ⊗ |ϕj〉 ) = |ϕj〉 ⊗ |ϕi〉.

tr((ρ⊗ ρ)F) =

n∑
i,j=0

〈ϕiϕj |(ρ⊗ ρ)F|ϕiϕj〉 =

n∑
i,j=0

〈ϕiϕj |(ρ⊗ ρ)|ϕjϕi〉

=

n∑
i,j=0

〈ϕi|ρ|ϕj〉〈ϕj |ρ|ϕi〉 =

n∑
i=0

〈ϕi|ρ2|ϕi〉 = tr(ρ2)

We use this by creating a copy A′ ⊗B′ of the system A⊗B.

Eψtr(ρ2
A) = Eψtr[(ρA ⊗ ρA′)FAA′ ] = Eψtr[(ψAB ⊗ ψA′B′)(FAA′ ⊗ 1BB′)]

= tr

[
(FAA′ ⊗ 1BB′)

∫
|ψ〉〈ψ| ⊗ |ψ〉〈ψ|dψ

]
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We now compute

Z =

∫
|ψ〉〈ψ| ⊗ |ψ〉〈ψ|dψ =

∫
(U ⊗ U)(|ψ0〉〈ψ0| ⊗ |ψ0〉〈ψ0|)(U† ⊗ U†)dU =

∫
(U ⊗ U)ρ0(U† ⊗ U†)dU

where U are unitary matrices. For any unitary matrix V, we have

(V ⊗ V )Z =

∫
U

((V ⊗ V )(U ⊗ U)ρ0(U† ⊗ U†)dU =

∫
W

(W ⊗W )ρ0(W † ⊗W †)(V ⊗ V )dW = Z(V ⊗ V ).

Therefore Z commutes with every unitary matrix U ∈ U(n) representation. By Schur’s lemma, Z can be
decomposed as a sum of projection operators on the invariant subspaces of Cn ⊗ Cn.

Z = λ1πsym + λ2πantisym πsym =
1

2
(1n2 + F) , πantisym =

1

2
(1n2 − F).

Noting that F commutes with all U ⊗ U

tr(FZ) =

∫
tr(U ⊗ U(πsym − πanitsym)ρ0U

† ⊗ U†dU = tr(ρ0πsym)− tr(ρ0πantisym) = λ1tr(πsym)− λ2tr(πanisym)

tr(1n2Z) =

∫
tr(U ⊗ U(πsym + πanitsym)ρ0U

† ⊗ U†dU = tr(ρ0πsym) + tr(ρ0πantisym) = λ1tr(πsym) + λ2tr(πanisym)

and hence, using ρ0 = |ψ0〉〈ψ0| ⊗ |ψ0〉〈ψ0|,

λ1 =
2

n(n+ 1)
tr(πsymρ0) =

2

n(n+ 1)
λ2 =

2

n(n− 1)
tr(πantisymρ0) = 0.

Therefore,

Eψtr(ρ2
A) = tr

[
(FAA′ ⊗ 1BB′)

(
2

n(n+ 1)
πAB:A′B′

sym

)]
=

2

n(n+ 1)
tr

[
(FAA′ ⊗ 1BB′)

1

2
(1ABA′B′ + FABA′B′)

]
=

1

n(n+ 1)
tr

[
(FAA′ ⊗ 1BB′) + (1AA′ ⊗ FBB′)

]
=

|A||B|2 + |A|2|B|
|A||B|(|A||B|+ 1)

=
|A|+ |B|
|A||B|+ 1

For A >> B, we have Eψtr(ρ2
A) ≈ 1/|A|. Let ai be the eigenvalues of ρA, then

∑
i

(
ai −

1

|A|

)2

=

(∑
i

a2
i −

2

|A|
∑
i

ai +
|A|
|A|2

)
= tr(ρ2

A)− 1

|A|
≈ 0

Therefore, A is almost maximally mixed. Using Levy’s Lemma we can say that for almost all pure states
|ψ〉, ρA is close to maximally mixed [4].

Theorem (Levy’s Lemma). Let φ : S2n−1 → R be a Lipschtz continuous function on the unit sphere, i.e.
|φ(x)− φ(y)| ≤ η‖x− y‖2. Then

Prob

[
|φ(x)− Exφ| ≥ ε

]
≤ 2 exp

(
−nε2

9π3η2

)
The local trace distance φ : |ψ〉 7→ ‖ρA − 1A

|A|‖1 is Lipschitz continuous.
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3 Fidelity of Retrieved Information

Consider the case when |H| << |E| so that H is maximally entangled with E. Just after Alice throws in
her information, the black hole system B is maximally entangled with NE. As the information leaks from
the black hole through the radiation R, the correlation between N and remaining black hole state B’ weak-
ens, and the information in M goes to Bob. Suppose s qubits have radiated in R, and n−s qubits remain in B’.

Let ΨBNE be the pure density operator of BNE, and ρBN = TrEΨBNE be the corresponding marginal
density operator on BN. The marginal density operator on NB’ is given by

σNB’(V B) = TrR

[
ρNB(V B)

]
, where ρNB(V B) =

(
IN ⊗ V ∗B

)
ρNB

(
IN ⊗ V B†

)
.

We show that this marginal density operator is very close to a maximally mixed and B’ and N are almost
separable. To this end we prove the following inequality∫

dV B ‖σNB’(V B)− σN (V B)⊗ σB
′

max‖21 ≤
|NB|
|R|2

Tr

[(
ρNB

)2]
where σN (V B) = TrB′

[
σNB’(V B)

]
is the marginal density operator on N, and σB

′

max = IB
′
/|B′| is the

maximally mixed density operator on B’.

‖σNB’(V B)− σN (V B)⊗ σB
′

max‖22 = Tr[(σNB’(V B))2]− 1

|B′|
Tr[(σN (V B))2].

As was done in the previous section, and using the cyclic property of the trace∫
dV B Tr[(σNB’(V B))2] =

∫
dV B Tr[(σNB(V B)⊗ σN̄B̄(V B̄))(FNN̄ ⊗ FB

′B̄′ ⊗ IRR̄)]

=

∫
dV B Tr[(V BσNBV B† ⊗ V B̄σN̄B̄V B̄†)(FNN̄ ⊗ FB

′B̄′ ⊗ IRR̄)]

=

∫
dV B Tr

[
(σNB ⊗ σN̄B̄)

[
(V B† ⊗ V B̄†)(IRR̄ ⊗ FB

′B̄′
)(V B ⊗ V B̄)

]
⊗ FNN̄

]
= Tr

[
(σNB ⊗ σN̄B̄)

[ ∫
dV B (V B† ⊗ V B̄†)(IRR̄ ⊗ FB

′B̄′
)(V B ⊗ V B̄)

]
⊗ FNN̄

]
= Tr

[
(σNB ⊗ σN̄B̄)(αIBB̄ + βFBB̄)⊗ FNN̄

]
= αTr[(σN )2] + βTr[(ρNB)2]

where B̄ was an auxiliary copy of the system B. α and β are found using the same method as in previous
section

α =
|R||B| − |B′|
|B|2 − 1

≤ 1

|B′|
β =

|B′||B| − |R|
|B|2 − 1

≤ 1

|R|
Similarly,∫
dV B Tr[(σN(V B))2] = Tr

[
(σNB ⊗ σN̄B̄)

[ ∫
dV B (V B† ⊗ V B̄†)(IRR̄ ⊗ IB

′B̄′
)(V B ⊗ V B̄)

]
⊗ FNN̄

]
= Tr

[
(σNB ⊗ σN̄B̄)(IBB̄ ⊗ FNN̄ )

]
= Tr[(σN(V B))2]

3



Therefore,∫
dV B ‖σNB’(V B)− σN (V B)⊗ σB

′

max‖22 ≤
∫
dV B

(
Tr[(σNB’(V B))2]− 1

|B′|
Tr[(σN (V B))2]

)
≤ 1

|B′|
Tr[(σN (V B))2] +

1

|R|
Tr[(ρNB)2]− 1

|B′|
Tr[(σN (V B))2]

≤ 1

|R|
Tr[(ρNB)2]

From Cauchy-Schwarz inequality,

‖X‖21 ≤ |X| ‖X‖22

⇒
∫
dV B ‖σNB’(V B)− σN (V B)⊗ σB

′

max‖21 ≤ |NB|
|R|

∫
dV B ‖σNB’(V B)− σN (V B)⊗ σB

′

max‖22

≤ |NB|
|R|2

Tr[(ρNB)2]

B is maximally entangled with NE, and therefore BN is maximally mixed on a system of dimension
|B|/|N |, implying Tr

[
(ρNB)2] = |N |/|B|. Thus,∫

dV B ‖σNB’(V B)− σN (V B)⊗ σB
′

max‖21 ≤
|N |2

|R|2
= 22(k−s)

Hence, we see that as soon as Bob receives k qubits from the black hole radiation, he gets hold of almost
all information that Alice had.

Remark (Trace distance). The trace distance ‖ρ − σ‖1 is a bound on how well can two quantum states be
distinguished by a generalized measurement (POVM), and hence is a good measure of distinguishability of
two states.

Even though Bob now hold’s Alice’s information in a subsystem M’ of RE, it may be very diffusely
distributed within RE. Bob can then perform a computation that maps M’ to a compact localized system

M̂ so that ρM̂N is a maximally entangled state |ΦM̂N 〉. The fidelity, which is a measure of correlation of

ρM̂N with |ΦM̂N 〉, is bounded by

F (V B) ≡ 〈ΦM̂N |ρM̂N |ΦM̂N 〉 ≥ 1− ‖σNB’(V B)− σN (V B)⊗ σB
′

max‖1 ∼ 1− 2k−s

Thus, the state obtained after computation is very close to maximally entangled. To prove the above
inequality, we start with the definition of fidelity

F (%, ς) =

(
Tr
√
%1/2ς%1/2

)2

= ‖%1/2ς1/2‖21

Tr(
√
M†M) =

∑
i

|mi| ≥
∑
i

mi ≥ tr(M)⇒ Tr
√
%1/2ς%1/2 ≥ Tr(

√
%
√
ς)⇒

√
F (%, ς) ≥ Tr(

√
%
√
ς)

⇒ ‖√%−
√
ς‖22 = Tr[(

√
%−
√
ς)2] = 2− 2Tr(

√
%
√
ς) ≥ 2− 2

√
F (%, ς)

%− ς =
1

2
(
√
%−
√
ς)(
√
%+
√
ς) +

1

2
(
√
%+
√
ς)(
√
%−
√
ς)

Now consider the basis |i〉 that diagonalizes
√
%−√ς with eigenvalues λi and U the unitary transformation

U =
∑
i sign(λi)|i〉〈i|.

Tr[ |%− ς| ] ≥ Tr[(%− ς)U ] (True for any unitary U)

= Tr[ |√%−
√
ς|(√%+

√
ς) ] =

∑
i

|λi|〈i|
√
%+
√
ς|i〉

≥
∑
i

|λi| |〈i|
√
%−
√
ς|i〉| =

∑
i

|λi|2 = ‖√%−
√
ς‖22
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where in the last line we have used the property that % and ς are positive semi-definite Hermitian operators.
Therefore,

Tr[ |%− ς| ] ≥ 2− 2
√
F (%, ς) ⇒

√
F (%, ς) ≥ 1− 1

2
Tr[ |%− ς| ] ⇒ F (%, ς) ≥ 1− Tr[ |%− ς| ]

ΨB′RNE is the purification of NB’ density operator σNB
′
. If N and B’ are decoupled, then ER can be

split into two subsystems E = M̂M̌ such that M̂ purifies σN and M̌ purifies σB
′

ΨB′RNE = ΦNM̂ ⊗ ΦM̌B′

By Uhlmann’s Theorem, F (%, ς) = max |〈ψ%|ψς〉|2 where max is over all purifications of %. As |ΦB′RNE〉 =

ΦNM̂⊗ΦM̌B′
is the purification of σN (V B)⊗σB′

max, there exists a purification |ρB′RNE〉 of the state σNB’(V B),
such that

|〈ΦB
′RNE |ρB

′RNE〉|2 = F (ΦB
′RNE , ρB

′RNE) ≥ 1− ‖σNB’(V B)− σN (V B)⊗ σB
′

max‖1

As a corollary to Uhlmann’s theorem, we have F (%AB , ςAB) ≤ F (%A, ςA) because purifications of AB are
also purifications of A. Hence, performing a partial trace on the subsystem M̌B′ in the above inequality, we
obtain

〈ΦM̂N |ρM̂N |ΦM̂N 〉 = F (TrM̌B′ [ΦB
′RNE ],TrM̌B′ [ρB

′RNE ])

≥ F (ΦB
′RNE , ρB

′RNE)

≥ 1− ‖σNB’(V B)− σN (V B)⊗ σB
′

max‖1

Remark (Fidelity). An equivalent definition of fidelity is F (ρ, σ) = min{Fi}
∑
i

√
Tr[ρFi]Tr[σFi], where the

set {Fi} constitutes a POVM. If the given state is ρ, outcome i will have probability Tr[ρFi], and if the given
state is σ, outcome i will have probability Tr[σFi]. The fidelity is thus the correlation of the two probability
distributions.

For the case when |H| >> |E|, essentially no information is released until the black hole has radiated
enough so that |B′| equals |NRE|, because till this time the radiation is maximally entangled with the black
hole and N may be coupled to B’. But soon after this state is reached, the above analysis becomes applicable
and black hole starts radiating the information that Alice had.

4 Conclusion

We observe that if the black hole has radiated more than half of it’s initial state, any k qubit information
that is thrown into the black hole gets reflected back in the next k qubits the black hole emits, assuming the
black hole mixing happens rapidly. In case the black hole is new and hasn’t radiated enough, it emits the
information in the next k qubits past it’s half evaporation.
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Figure 1: Entanglement entropy and information in a bipartite system. Taken from [2]. Thermodynamic entropy
is logm where m is the size of the system.
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