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Abstract

In this report, we review a derivation of the entropy formula for holo-
graphic gravitational theories as was found in [1]. We also study its extention
to prove the Ryu-Takayanagi [2] conjecture which states that the entropy of
a region of a field theory is proportional to the area of the minimal surface
in the dual gravity theory with the surface ending on the boundary of the
field theory region.
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Chapter 1

Introduction

In this report we review a derivation of the gravitational entropy in a Euclidean
theory without the U(1) symmetry. For the case with U(1) symmetry, the entropy
was calculated by Hawking and Gibbons [3]. Our approach is based on the replica
trick method which requires calculation of partition function of the theory on an
n-replica manifold. The construction of the replica manifold is described in the
report. Crucial in this construction is the role of holography. We take our theory
to be holographic and believe that setting the boundary conditions describes the
theory completely. Even though the method gives valid boundary conditions only
for integer n, we nevertheless calculate the values for integers and analytically con-
tinue them to non-integer values, which is the essence of the replica trick.

The calculations for entropy are based on the presence of a co-dimension 2
surface which is a fixed point of the Zn symmetry of the replica. The Euclidean
time circle shrinks to zero on this surface, and we get a singularity. The singularity
differs from conical singularity in that it may not have the O(2) symmetry of the
cone. The curvature scalar obtains a delta peak at this singularity which upon
integration in the gravity action contributes the area term to the entropy. The
area is of the singular surface which may be seen to be a minimal surface when
the system is restricted to obey Einstein equations close to the surface in leading
order of n-1.

At last we show how the analysis of gravitational entropy can be extended to
calculate entanglement entropy in dual field theories. The result matches with the
Ryu-Takayanagi conjecture.
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Chapter 2

Partition Function

In this chapter we relate the partition function of our theory to a path integral, and
write the expressions for density matrix and the entropy in terms of the partition
function. We also introduce the replica trick for computation of entanglement
entropy.

2.1 Path Integral

In the path integral approach, we have for a field evolving from φ1 at time t1 to
φ2 at t2 [3],

〈φ2, t2|φ1, t1〉 =

∫
d[φ] exp(ιI[φ]) (2.1)

where the integral is over all fields which satisfy the given field values at times t1
and t2. We also have

〈φ2, t2|φ1, t1〉 = 〈φ2| exp[−ι
∫ t2

t1

Hdt]|φ1〉. (2.2)

Taking the integral on the Euclidean section (with dt = −ιdτ), and setting φ1 = φ2

we have,

Z = Tr exp(−
∫ τ2

τ1

Hdτ) =

∫
d[φ] exp(ιI[φ]) (2.3)

where the integral is over the fields periodic with period τ2 − τ1, which from now
on we set to be equal to 2π. The left side of the last equality can be interpreted
as the partition function of a thermal state.
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2.2 Entropy

From the theory of statistical mechanics, we take the density matrix for the Eu-
clidean theory to be

ρ̂ =
1

Z
exp(−

∫ τ2

τ1

Hdτ) ≡ 1

Z
ρ (2.4)

〈φ2|ρ|φ1〉 =
1

Z

∫ φ2

φ1

d[φ] exp(ιI[φ]) (2.5)

where ρ is the un-normalized density matrix.
The entanglement entropy or the Von-Neumann entropy for the system in

defined as
S = −Tr[ρ̂ log(ρ̂)] (2.6)

which may be written as

S = − lim
n→1

∂

∂n
Tr

[( ρ
Z

)n]
= − lim

n→1
n∂n[log(Z(n))− n log(Z(1))] (2.7)

where Z(n) = Tr[ρn] and Z(1) = Z.

2.3 Replica Trick

In holographic theories, setting the boundary conditions describes the entire sys-
tem. That is, the path integral in the bulk is equal to the partition function on
the boundary. This fact is crucial in construction of our replica manifold, as the
replica construction of the boundary theory can induce the proper interior geom-
etry in the bulk.

For integer n, the formula for Z(n) can be found from the path integral in a
manifold Mn which consists of n replicas of the original manifold. Notice that

Z(n) = Tr[ρn] = 〈φ1|ρ|φ2〉〈φ2|ρ|φ3〉 . . . 〈φn|ρ|φ1〉 (2.8)

where we have used the completeness relation. Thus the geometry for Z(n) can
be constructed from n replicas of the original geometry in the following manner.
Introduce a cut along the t = 0 hyper-surface of the original manifold M . Con-
struct n replicas of the manifold. Join the t+ boundary of the cut of i’th replica to
t− boundary of the cut of (i+1)’th replica for 1 ≤ i ≤ n− 1. Join the t+ boundary
of the cut of n’th replica to t− boundary of the cut of 1st replica. The obtained
manifold is Mn.
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The length of time circle in the new manifold is 2πn as compared to 2π in the
original manifold. But the couplings are periodic with period 2π as they would be
same for each of the replica. That is, we have Zn symmetry on the boundary. We
assume here that the Zn symmetry extends to the bulk solution.

When only discreet time symmetry is present instead of continuous symmetry,
the above construction would not hold any meaning for non-integer n, but we
nevertheless analytically continue our expression to non-integer values to obtain
the entropy.
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Chapter 3

Gravitational Entropy

For n > 1, we have a special co-dimension 2 surface Σ which is a fixed point of
the Zn symmetry and where the time circle shrinks to zero. This surface induces a
singularity in the metric. If the theory had continuous time symmetry, the singu-
larity would be conical. But for the general case, we have the discrete symmetry
τ → τ + 2πk for integer k, and we call singularities of this kind squashed cones
[4]. In this chapter we study the properties of this surface singularity and how it
contributes to entanglement entropy.

Note that if there were no such special surface, where the circle shrinks to 0,
then log(Z(n)) would simply be equal to n log(Z(1)) owing to the symmetry of
the system, and hence giving a zero entropy.

3.1 Metric

For a static space-time, the metric may be written as

ds2 = B(x)dt2 + hab(x)dxadxb a, b = 1, . . . , d− 1. (3.1)

We consider only the metrics with Euclidean signature and hence take B(x) > 0.
The co-dimension 2 surface Σ has only one non-vanishing extrinsic curvature for
static spacetimes, since the extrinsic curvature for a normal vector directed along
the Killing vector ∂t is zero.

Let H be a constant time hyper-surface. Consider in H the normal Riemann
coordinates r, yi(i = 1, . . . , d− 2) with origin on Σ. We then have

hab(x)dxadxb = d%2 + (γij(y) + 2%kij(y) +O(%2))dyidyj. (3.2)
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Coordinate % is the geodesic distance from a point on the hypersurface H to Σ
and γij(y)dyidyj is a metric on Σ. Then kij(y) is the extrinsic curvature tensor of
Σ for the unit normal vector na = δra. Introducing the coordinate ζ =

√
Bt,

dζ =
√
Bdt+ ζwadx

a, (3.3)

where wa = 1
2
∂aB/B are the acceleration vector of the coordinate frame. Then

the metric up to second order in % and ζ takes the form

ds2 ' dζ2 + d%2 + (γij(y) + 2%kij(y))dyidyj − 2ζw%(y)dζd%− 2ζdζwi(y)dyi. (3.4)

We make the coordinate transformation

vi = yi − 1

2
ζ2wi(y), %̄ = %− 1

2
ζ2w%(y) (3.5)

to get
ds2 ' dx2

1 + dx2
2 + (γij(v) + 2x2kij(v))dvidvj, (3.6)

where x1 = ζ and x2 = %̄ and terms second order in ζ and %̄ are omitted. We again
make the transformation

x1 = r sin τ, x2 = r cos τ (3.7)

to get the metric in the form

ds2 ' r2dτ 2 + dr2 + (γij(v) + 2r cos(τ)kij(v))dvidvj. (3.8)

In static space-time the surface Σ has a single non-vanishing extrinsic curvature.
Generalization to surfaces with two non-trivial extrinsic curvatures gives

ds2 ' dx2
1 + dx2

2 + (γij(v) + 2xpk
(p)
ij (v))dvidvj, (3.9)

ds2 ' r2dτ 2 + dr2 + (γij(v) + 2r cos(τ)k
(1)
ij (v) + 2r sin(τ)k

(2)
ij (v))dvidvj. (3.10)

3.2 Linearized Equations of Motion

We obtain conditions the singular surface must satisfy so that for small ε ≡ n− 1
the system obeys the linearized field equations near r = 0 i.e., the system obeys
Einstein equations to leading order in n− 1 [1].

The modification in metric up to linear order in ε upon application of replica
trick and analytic continuation is

ds2 = e2ρ(dr2 + r2dτ 2) + gijdv
idvj + δg (3.11)

gij = γij(v) + 2x1k
(1)
ij + 2x2k

(2)
ij (3.12)
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where the factor e2ρ, ρ ∼ ε log r to first order has been introduced to make the
metric smooth near r = 0. We now work in the complex coordinates z = x1 + ιx2.
As gauge conditions we set δgzz = δgz̄z̄ = 0. We also set δgzz̄ = 0 as this variation
is already already included in ρ. We require the perturbation to be periodic with
δgab(τ) = δgab(τ + 2π).

We expect the vi derivatives to be regular and only xi derivates to contribute
to divergences in the curvatures. The system must satisfy the linearized equations
δGzz = δTzz. We have

δRzz =
−ε
z

2kz +
1

2
(2δgpz;zp − δg;zz −∇2δgzz) + (regular as r → 0) (3.13)

=
−ε
z

2kz −
1

2
∂2
zδh+ . . . (3.14)

where δh = gijδgij and kz = k1− ιk2. To avoid singularity in the stress tensor the
two potential divergent terms must be cancel

1

2
∂2
zδh =

−ε
z

2kz (3.15)

1

2
∂2
z̄δh =

−ε
z̄

2kz̄. (3.16)

On imposing the condition that δh is periodic in time, we get kz = kz̄ = 0
which implies that the extrinsic curvature of the singular surface is 0 and hence
the surface is a minimal area surface. To check this observe that δh is periodic in τ
and so are its derivates, and that the time integral of time derivative of a periodic
function is 0. Hence integral of,

∂t[(r∂r − 1)∂zδh] ∝ (z∂z − z̄∂z̄)(z∂z + z̄∂z̄ − 1)∂zδh ∝ εkz (3.17)

is zero. To get the above proportionality, observe that kz and kz̄ are independent
of z and z̄ and hence we have the following relations

∂3
zδh = −∂z(

4εkz
z

) =
4εkz
z2

(3.18)

∂z̄∂
2
zδh = −∂z̄(

4εkz
z

) = 0 (3.19)

∂z∂
2
z̄δh = −∂z(

4εkz̄
z̄

) = 0 (3.20)

∂3
z̄δh = −∂z̄(

4εkz̄
z̄

) =
4εkz̄
z̄2

. (3.21)

Now, since kz is independent of τ and its τ integral is 0, we have kz = 0. Similarly
kz̄ = 0.
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3.3 Area Term in Entropy

The gravity action for the n-replica in a d+1 dimension space-time is given by

Igr,Mn = − 1

16πG
(d+1)
N

∫
Mn

dd+1x
√
g(R + 2Λ)− 1

8πG
(d+1)
N

∫
∂Mn

ddx
√
hK (3.22)

where Λ is the negative cosmological constant and the last term is the Gibbons-
Hawking boundary term. Under saddle point analysis, the path integral can be
taken to be the extremal action given by the fields satisfying the equations of mo-
tion.

We know from the previous section that the extrinsic curvature vanishes for the
singular surface. Hence, up-to second order in r, the metric is time independent
and the singularity is approximately conical. The presence of the singular surface
gives rise to a peak in the curvature scalar at the singular surface which gives a
contribution to the action [4]∫

Mn

√
gd4xR→ n

∫
M

√
gd4xR + 4π(1− n)A(Σ) + . . . (3.23)

where A(Σ) is the area of the singular surface Σ, and the regularization dependent
O((n− 1)2) terms have been omitted.

Therefore,

log(Z(n))− n log(Z(1)) =
(1− n)A(Σ)

4G
(4)
N

(3.24)

S =
A(Σ)

4G
(4)
N

(3.25)

From the above analysis the entropy may be seen to be based on the local
property of the fixed point surface with vanishing curvature.

We now provide a proof of relation (3.23) for conical singularities [5]. The
metric on a space Mα with topology of cone Cα is given by

ds2 = eσ(dρ2 + ρ2dφ2) ≡ eσds2
C (3.26)

where ds2
C is the line elements on Cα, which upon hyperbolic regularization by a

parameter a gives

ds2
H = udρ2 + ρ2dφ2 =

ρ2 + a2α2

ρ2 + a2
dρ2 + ρ2dφ2. (3.27)
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Representing the scalar curvature as

R = e−σRH − e−σ�Hσ (3.28)

where RH and �H are the curvature and Laplace operator defined with respect to
hyperbolic metric, and taking the volume element dµ = eσ

√
uρdρdφ, we evaluate

the scalar curvature∫
M̄α

R = 2πα

∫ ∞
0

dρu′ρu
− 3

2 −
∫ ∞

0

∫ 2πα

0

√
uρdρdφ�Hσ (3.29)

= 4π(1− α)−
∫ ∞

0

∫ 2πα

0

√
uρdρdφ�Hσ (3.30)

where M̄α is the regularized manifold. The first term is related to the Euler
number of the surface Σ and is a topological characteristic independent of the
parametrization. The second term is parametrization dependent but in the limit
a→ 0, where regularization is taken off, we have

lim
M̄α→Mα

∫
M̄α

R = 4π(1− α) +

∫
Mα/Σ

R (3.31)

where σ is the singular region. In higher dimensions we have∫
Mα

R = 4π(1− α)A(Σ) +

∫
Mα/Σ

R. (3.32)

where A(Σ) is the area of Σ. Since only the singular surface gives rise to the first
term on the right side of equation, we see can consider a local representation of
curvature with a peak on singular surface.
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Chapter 4

Entanglement Entropy in Dual
Field Theories

For calculation of entanglement entropy, we are interested in entanglement among
fields in two spatial regions (accessible A and inaccessible B) separated by a co-
dimension 2 surface Σ at a specific time. The t = 0 cut in this case is along the
co-dimension 1 surface which is accessible to the observer and has Σ as its bound-
ary. The cut on the inaccessible region disappears while tracing over that region
to obtain the reduced density matrix.

We consider field theories with gravity duals. The field theory lives at the
boundary of a one dimension higher gravity theory. The cut A in the field theory
region induces a cut Ã in the bulk with a boundary Σ̃ which is homologous to A,
A∪ Σ̃ = ∂Ã [6]. Σ̃ would be a singular surface in the bulk of the replica manifold.
From the analysis of previous section, the extrinsic curvatures of the singular sur-
face must vanish for the system to obey linearized equations of motion. We then
expect the boundary Σ̃ of the cut to be a minimal surface satisfying the criteria
that it be homologous to the field theory region with ∂Σ̃ = Σ.

The entropy is then given by the area of the above minimal surface as in the
previous section, and we thus obtain the entropy formula conjectured by Ryu and
Takayanagi [2].
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Chapter 5

Conclusion

In this report we used the replica trick, which is a standard technique for comput-
ing entanglement entropy in field theories [7], to calculate entropy in holographic
gravitational theories. The entanglement entropy in gravitational theory matches
with the Bekenstein-Hawking entropy for black holes and suggests that black hole
entropy may be an entanglement entropy.

We also extended the analysis of holographic gravitational entropy to calcu-
late entanglement entropy of dual field theories on the boundary of gravity theory.
The result matches with the Ryu-Takayanagi conjecture and connects the entropy
calculations in quantum field theory to calculations in classical geometry.

Our analysis in this report was based on Euclideanization of static space-time.
The surfaces considered were embedded in constant time hypersurfaces. Ryu-
Takayanagi conjecture is however predicted to be true for surfaces in full Lorentzian
space-time. A generalized derivation of entropy for time dependent cases may re-
quire an approach other than Euclideanization.

One point worthwhile to think about would be whether the the singular surface
is always homologous to the boundary cut in holographic gravity theories. For
example, if the boundary is closed the singular surface may be the horizon of a
black hole contained in the bulk, and in this case the black hole boundary seems to
be homologous to the boundary cut. If the property would hold in general, Ryu-
Takayanagi conjecture would be a simple consequence of this property. If true, it
may also give nice geometric interpretations of entropy in holographic theories.
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