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Abstract

In this report, we review some basic techniques used in the theory of
random matrices and apply them to solve 2-matrix models. Specifically, we
study, for large matrix dimension and weak coupling, the Lens Space model
which corresponds to the Chern Simons theory on S3/Z2. We also extend
some of the results to the ABJM matrix model.
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Chapter 1

Introduction

A random matrix is a matrix with random entries. The distributions they follow
are generally inferred from the symmetries involved in the problems. Random
matrices have long been used in physics to study, among others, the energy level
spacings in nuclei, chaotic quantum systems and 2-dimensional quantum gravity
[1]. Certain matrix models have also been shown to represent non-perturbative
formulations of String Theory with low space-time dimensions [2, 3]. Many tech-
niques have been employed to solve matrix models, some of them being method of
orthogonal polynomials, saddle-point analysis, and Feynman perturbative methods
[4].

In Chapter 2, we review some of the basic concepts of the random matrix
theory. We study the reduction of the matrix measure to the eigenvalue space
for Hermitian matrices with action only dependent on the eigenvalues. We then
use saddle-point analysis to get the planar eigenvalue distribution. The term
planar has been used because saddle-point analysis gives, in the limit of large
matrix dimension, the genus zero contribution to the expression which can be
obtained by summing the contributions from the planar diagrams in the Feynman’s
diagrammatic method. We also give an expression for the planar free energy in
terms of the eigenvalue distribution, which may further be reduced to certain
contour integral of the resolvent [5].

Two-matrix models involve two random matrices with effective potentials that
couple the two matrices. Chern-Simons theory on Lens Space L(2,1) (S3/Z2) has
been shown to reduce to a Hermitian 2-matrix model with unitary Haar measure
[6]. We study this matrix model in Chapter 3. We show how the one-matrix
model saddle-point analysis can be extended two-matrix problem and obtain a
closed form solution for the planar resolvent of the lens space model. We then use
perturbative calculations to explicitly compute the ’t Hooft parameters in terms
of the branch cut endpoints in the weak coupling regime. It has also been shown
that the path integral in the calculations of expectation values of supersymmetric

6



Wilson loops in Chern-Simons theories with matter reduce to matrix model [7].
Since this matrix model for the ABJM theory is related to the lens space model
by an analytic continuation of one of the ’t Hooft parameters, we easily extend
the results from lens space model to calculate the vacuum expectation value of the
1/2 BPS Wilson Loop.
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Chapter 2

Random Matrices

In this chapter, we study the formal aspects of Hermitian one-matrix models with
a unitary Haar measure. We derive the planar eigenvalue distribution and free
energy using the saddle-point analysis and resolvent formalism.

2.1 Basics

Consider the following action formed from Hermitian N ×N matrix M [8]:

1

gs
W (M) =

1

2gs
Tr(M2) +

1

gs

∑
p≥3

gp
p
Tr(Mp). (2.1)

The action has a gauge symmetry

M → UMU † (2.2)

and the partition function for the theory is given by

Z =
1

vol(U(N))

∫
dM e−

1
gs
W (M) (2.3)

The measure in the integral is the unitary Haar measure (dM = d(UM) for every
unitary matrix U)

dM = 2
N(N−1)

2

N∏
i=1

dMii

∏
1≤i<j≤N

dRe(Mij) dIm(Mij) (2.4)

and vol(U(N)) is the volume factor of the gauge group.
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2.2 Eigenvalue Space

The Hermitian matrix M can be reduced to a diagonal form [3]

M = UΛU † (2.5)

where U is a unitary matrix and Λ = diag(λ1, λ2, . . . , λN). Now we have

dM = dU ΛU † + U dΛU † + U Λ dU † (2.6)

⇒ U † dM U = dΛ + [U † dU, Λ] (2.7)

dα = U †dU is the infinitesimal element in the tangent space to the unitary group,
the measures [dM ] and [dM ′] = [U † dM U ] are the same, and

dM ′
ij = dλiδij + dαij(λi − λj) (2.8)

upon change of coordinates from M ′
ij to (λi, αij(i 6=j)). Therefore,

[dM ] =
∏
i 6=j

|(λi − λj)| dαij
N∏
i=1

dλi. (2.9)

The factor ∆(λ)2 =
∏

i 6=j |(λi − λj)| is known as the Vandermonde determinant.
Since, our original action only included traces of powers of the matrix M, the
integrand can be represented only in the terms of the eigenvalues, and the integral
over dα is just a numerical factor.

2.3 Saddle-Point Analysis

The partition function can be now be written as [5]

Z =
1

N !

∫ N∏
i=1

dλi
2π

eg
−2
s Seff(λ) (2.10)

where the effective action Seff is given by

Seff(λ) = − t

N

N∑
i=1

V (λi) +
2t2

N2

∑
i<j

log |λi − λj| (2.11)

with the ’t Hooft parameter t = gsN .
As the summation over N is roughly of order O(N), the effective action can

be seen to be O(1) in the large N limit. In the limit gs → 0, the contribution
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to the partition function will be dominated by the saddle-point configuration that
extremizes the action. This is analogous to attaining lowest energy configuration
in the limit of zero temperature. We obtain the saddle-point equations by varying
the effective action with respect to the eigenvalues

1

2t
V ′(λi) =

1

N

∑
j 6=i

1

λi − λj
, i = 1, . . . , N. (2.12)

We may interpret the λi as the coordinates of charged particles moving in an
effective potential

Veff = V (λi)−
2t

N

∑
j 6=i

log|λi − λj| (2.13)

where the logarithmic term acts as coulomb repulsion. Near t = 0 the potential
term dominates over Coulomb interaction, and the eigenvalues lie close to a critical
point with V ′(x∗) = 0. As t grows, the Coulomb interaction starts spreading out
the eigenvalues. The distribution of eigenvalues may be written as

ρ(λ) =
1

N

N∑
i=1

δ(λ− λi) (2.14)

where λi are taken from the solutions of the saddle-point equations. In the large
N limit, we expect the distribution to form a continuum around the critical point
x∗ of the potential. If the support is taken to be such an interval, it is known as
one-cut solution.

Using the continuum approximation

1

N

N∑
i=1

f(λi)→
∫
C

f(λ)ρ0(λ)dλ, (2.15)

we may write the saddle-point equation as

1

2t
V ′(λ) = P

∫
C

ρ0(λ′)dλ′

λ− λ′
(2.16)

where P denotes the principal value of the integral and ρ0 is the distribution in
the large N limit. One standard way to solve the integral equation for ρ0 is to
introduce an auxiliary function called the resolvent, which is defined as

ω(p) =
1

N

N∑
i=1

1

p− λi
(2.17)
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and labelled ω0(p) in the limit of large N. The genus zero resolvent has a discontinu-
ity along interval C (the support of the eigenvalue distribution). The discontinuity
can be calculated by contour deformations.

ωo(p+ ιε) =

∫
R
dλ

ρ0(λ)

p+ ιε− λ
=

∫
R−ιε

dλ
ρ0(λ)

p− λ
(2.18)

= P

∫
dλ
ρ0(λ)

p− λ
+

∫
Cε

dλ
ρ0(λ)

p− λ
, (2.19)

where Cε is a counterclockwise oriented contour around λ = p in the lower half
plane. The last integral can be evaluated as a residue, and we have

ω0(p+ ιε) = P

∫
dλ
ρ0(λ)

p− λ
− πιρ0(p). (2.20)

Similarly,

ω0(p− ιε) =

∫
R+ιε

dλ
ρ0(λ)

p− λ
= P

∫
dλ
ρ0(λ)

p− λ
+ πιρ0(p). (2.21)

Hence, we find

ω0(λ+ ιε)− ω0(λ− ιε) = −2πιρ0(λ) (2.22)

ω0(p+ ιε) + ω0(p− ιε) = P

∫
dλ
ρ0(λ)

p− λ
=
i

t
V ′(p) (2.23)

where the last equality follows from (2.16). The problem of finding the eigen-
value distribution has reduced to the Riemann-Hilbert problem of computing the
resolvent [8].

2.4 Free Energy

The free energy of the matrix model is given by

F = logZ. (2.24)

As can be seen from (2.10), in the limit gs → 0, the free energy scales as

F (gs, t) ≈ g−2
s F0(t) (2.25)

where F0(t) is the genus zero, or planar, free energy given by

F0(t) = Seff(ρ0) (2.26)

and

Seff(ρ0) = −t
∫
C

dλρ0(λ)V (λ) + t2
∫
C×C

dλdλ′ρ0(λ)ρ0(λ′) log |λ− λ′| (2.27)

is the continuum limit of (2.11).
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Chapter 3

Two-Matrix Models

In this chapter, we extend the saddle-point and resolvent formalism from the one-
matrix model solution in previous chapter to two-matrix models, specifically lens
space model in this report. We illustrate a perturbative calculation to obtain
the branch cuts in terms of the ’t Hooft parameters. We also use the ’t Hooft
parameter dictionary between the lens space matrix model and ABJM matrix
model to calculate the vacuum expectation values of Wilson Loops.

3.1 Solving the Lens Space Model

The partition function for the Chern Simons theory on the S3/Z2 is given by [9]

Z ∼
∫ ∏

i

dui
∏
α

dµα ∆2(u, µ) exp
(
− 1

gs
V (u, µ)

)
i ∈ (1, N1), α ∈ (1, N2)

(3.1)
where the measure

∆(u, µ) =
∏
i<j

2 sinh
(ui − uj

2

) ∏
α<β

2 sinh
(µα − µβ

2

) ∏
i,α

2 cosh
(ui − µα

2

)
(3.2)

and the potential is

V (u, µ) =
(

2
∑
i

u2
i + 2

∑
α

µ2
α

)
/2 (3.3)

In the limit of large N and for weak coupling, we obtain from saddle-point
analysis, by varying the action with respect to ui and µα

2ui = gs
∑
j 6=i

coth
(ui − uj

2

)
+ gs

∑
α

tanh
(ui − µα

2

)
(3.4)

2µα = gs
∑
β 6=α

coth
(µα − µβ

2

)
+ gs

∑
i

tanh
(µα − ui

2

)
(3.5)
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Observing the above the saddle-point equations, and proceeding in a similar
manner as for one-matrix model, we define the resolvent as

ω(z) = gs
∑
i

coth
(z − ui

2

)
+ gs

∑
α

tanh
(z − µα

2

)
. (3.6)

We may rewrite this as

ω(z) = ω(1)(z) + ω(2)(z − ιπ) (3.7)

with

ω(1)(z) = gs
∑
i

coth
(z − ui

2

)
(3.8)

ω(2)(z) = gs
∑
α

coth
(z − µα

2

)
. (3.9)

On multiplying (3.4) by coth((z−ui)/2) and summing over i, as well as multiplying
(3.5) by tanh((z − µα)/2) and summing over α, we obtain for large N limit(ω0(z)

2

)2

− 2z
ω

(1)
0 (z)

2
− 2(z − ιπ)

ω
(2)
0 (z − ιπ)

2
= f(z) (3.10)

where

f(z) = gs
∑
i

(ui − z) coth
(z − ui

2

)
+ gs

∑
α

(µα − (z − ιπ)) tanh
(z − µα

2

)
+

1

4
S2

(3.11)
is a regular function. (3.10) may be written in two ways,(ω0(z)

4

)2

− (z − ιπ)
ω0(z)

4
− ιπω

(1)
0 (z)

4
=
f(z)

4
(3.12)(ω0(z + ιπ)

4

)2

− (z + ιπ)
ω0(z + ιπ)

4
+ ιπ

ω
(2)
0 (z)

4
=
f(z + ιπ)

4
(3.13)

Assuming that the eigenvalues only spread along the real line, it follows that if
ω1(z) jumps at a point z then ω2(z − ιπ) does and vice versa. The relative shift
in the arguments of the two resolvents gives a separation of ιπ between the two
cuts. On one cut the resolvent jumps due to ω1(z) alone and due to ω2(z) alone
on the second cut. From this we can deduce, in a manner similar to one we used
to derive (2.23)

z =
1

4
(ω0(z + ιε) + ω0(z − ιε)) (u cut) (3.14)

z =
1

4
(ω0(z + ιπ + ιε) + ω0(z + ιπ − ιε)) (µ cut) (3.15)
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which implies that the resolvent has square root branch cuts (observing (2.23) and
that x = 1

2
x2′).

Consider the function

g(Z) ≡ eω0/2 + Z2e−ω0/2 (3.16)

where Z = ez. From (3.6), we see that

lim
z→∞

ω0 = gsN1 + gsN2 = t1 + t2 = t (3.17)

lim
z→−∞

ω0 = −gsN1 − gsN2 = −t1 − t2 = −t. (3.18)

Therefore, the function g(Z) has the limiting behaviour

lim
Z→∞

g(Z) = Z2e−t/2 (3.19)

lim
Z→0

g(Z) = e−t/2. (3.20)

The unique solution satisfying these conditions is

g(Z) = e−t/2(Z2 − ζZ + 1) (3.21)

where ζ is to be determined. Inverting g(Z) we find

ω0(Z)

2
= log

(1

2

[
g(Z)−

√
g2(Z)− 4Z2

])
(3.22)

We can easily see that eω0 has a square root branch cut involving the function

σ(Z) = g2(Z)− 4Z2 = e−t(Z − a)(Z − 1/a)(Z + b)(Z + 1/b). (3.23)

a±1,−b±1 can be identified as the endpoints of the cuts in the Z = ez plane with
the constraint

1

4

(
a+

1

a
+ b+

1

b

)
= et/2. (3.24)

The parameter ζ is related to the endpoints as

ζ =
1

2

(
a+

1

a
− b− 1

b

)
. (3.25)

The eigenvalue density along the intervals may be computed from the discon-
tinuity in the resolvent as was done in deriving (2.22) and integrated over each
interval to obtain the interval’s filling fraction (Ni/N) and hence the ’t Hooft
parameters ti,

ti =
1

4πι

∮
Ci

ω0(z)dz =
1

4πι

∮
Ci

ω0(Z)
dZ

Z
, i = 1, 2 (3.26)
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3.1.1 Perturbative Solution for Weak Coupling

The resolvent may be written as [9]

ω0(z)

4
= log

(e−t/4
2

[√
(Z + b)(Z + 1/b)−

√
(Z − a)(Z − 1/a)

])
(3.27)

At t = 0, the cuts shrink to points with a = b = 1. However, for small ’t Hooft
parameters, we may introduce two small parameters ε1 and ε2 such that

a+
1

a
= 2(1 + ε1) (3.28)

b+
1

b
= 2(1 + ε2) (3.29)

We wish to calculate ε1 and ε2 in terms of the ’t Hooft parameters t1 and t2. To
this end, we express the resolvent as

ω0(z)

4
∼ log

(√
Z2 + 2Z(1 + ε2) + 1−

√
Z2 − 2Z(1 + ε1) + 1

)
(3.30)

in anticipation of using the formula (3.26), since the first term inside the logarithm
was a holomorphic additive part and would not have contributed to the contour
integral. To integrate the resolvent along C1, we expand the resolvent around
ε2 = 0 which gives,

ω0(Z) ∼ 4 log
(

(Z + 1)−
√
Z2 − 2Zε1 − 2Z + 1

)
+

4Z

(Z + 1)
(
(Z + 1)−

√
Z2 − 2Zε1 − 2Z + 1

) ε2 (3.31)

+
2Z2

(
(Z + 1)

√
Z2 − 2Zε1 − 2Z + 1− 2Z2 − 4Z − 2

)
(Z + 1)4

(
(Z + 1)−

√
Z2 − 2Zε1 − 2Z + 1

)
2

ε22 +O(ε32)

Note that one square root has vanished and this makes the computation tractable.
As an illustration, we compute the coefficient to ε2 in the the expression for the ’t
Hooft parameter t1. The expression can be simplified as

4Z

(Z + 1)
(
(Z + 1)−

√
Z2 − 2Zε1 − 2Z + 1

)
=

4Z
(√

Z2 − 2Zε1 − 2Z + 1 + (Z + 1)
)

2(Z + 1)Z (ε1 + 2)

=
2
√
Z2 − 2Zε1 − 2Z + 1

(Z + 1) (ε1 + 2)
+

2

ε1 + 2

=

√
Z2 − 2Zε1 − 2Z + 1

(Z + 1) (µ(ε1))
+

1

µ(ε1)
(3.32)
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where µ(ε1) = 1+ε1/2. From (3.26) we see that the second term, being holomorphic
in C1, does not contribute and the first term gives a contribution equal to

ε2
4πιµ(ε1)

∮
C1

√
Z2 − 2Zε1 − 2Z + 1

(Z + 1)

dZ

Z
≡ ε2

4πιµ(ε1)

∮
C1

A(Z)dZ (3.33)

From the residue theorem we have∮
C1

A(Z)dZ = −2πι
(
Res(A, 0) + Res(A,−1) + Res(A,∞)

)
(3.34)

= −2πι(1− 2
√
µ(ε1)− 1) = 4πι

√
µ(ε1). (3.35)

Therefore, the contribution to t1 at first order in ε2 is

ε2√
µ(ε1)

≈ ε2

(
1− ε1

4
+

3ε21
32
− 5ε31

128
+

35ε41
2048

+O(ε51)
)
. (3.36)

The expressions for ’t Hooft parameters can be also inverted to give ε1 and ε2 in
terms of t1 and t2.

3.2 ABJM Theory

The ABJM matrix model is given by [10]

ZABJM(N1, N2, gs) ∼
∫ N1∏

i=1

dµi
2π

N2∏
j=1

dνj
2π

∆2e−
1

2gs
(2

∑
i µ

2
i−2

∑
j ν

2
j ) (3.37)

where

∆2 =

∏
i<j

(
2 sinh

(µi−µj
2

))2(
2 sinh

(νi−νj
2

))2∏
i,j

(
2 cosh

(µi−νj
2

))2 . (3.38)

The free energy of the ABJM partition function is related to the lens space partition
function by the analytic continuation N2 → −N2. The natural ’t Hooft parameters
in the ABJM theory are given by

λj =
Nj

k
(3.39)

where the Chern-Simons coupling k of ABJM theory is related to gs by

gs =
4πι

k
. (3.40)

16



Since in the ABJM theory couplings λ1,2 are real, matrix model couplings t1,2 are
purely imaginary.

The vacuum expectation values of the 1/6 and 1/2 BPS Wilson loops may be
calculated from the matrix model using the relations [10]

〈
W

1/6
�

〉
=

∮
C1

dZ

4πι
ω(Z) (3.41)

〈
W

1/2
�

〉
=

∮
∞

dZ

4πι
ω(Z). (3.42)

As an example, we calculate the vacuum expectation value of the 1/2 BPS
Wilson loop. We do the integral calculation for the Lens Space Model as we can
later use the analytic continuation t2 → −t2 to get the answer for the ABJM
theory. Since the integrand in (3.42) is holomorphic in the annulus A(0, R,∞) for
large R, as can be seen from (3.27),∮

∞

dZ

4πι
ω(Z) = −2πι

4πι
Res(ω,∞) (3.43)

= (ε1 − ε2) = ζ (3.44)

Note that out result is different from the one obtained in [10] as we have taken a
different coupling to match with the potential used in the previous sections of this
report and in [9].
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Chapter 4

Conclusion and Further Work

In chapter 2 we used the saddle-point analysis and the resolvent technique to
extract the eigenvalue distribution and free energy in the planar (genus 0) limit of
large matrix dimension. Once the resolvent is obtained from the effective potential
solving the Riemann-Hilbert, the eigenvalue distribution may be found with not
much difficulty from a contour integral of the resolvent.

The techniques from chapter 2 easily generalise to two-matrix models, as we saw
in chapter 3. For the lens space model we also derived the closed form solution of
the planar resolvent. We then used this expression to calculate using perturbation
the branch cuts of the planar resolvent in terms of the ’t Hooft parameters. We
showed how these relations can be used to solve quite conveniently for quantities
such as expectation values of Wilson Loops which are contour integrals of the
resolvent in the ABJM matrix model. We showed the calculations in detail for one
order, the rest of the calculations proceed similarly.

During our study, we also browsed through free energy calculations with higher
genus corrections, which are obtained from non-planar diagrams in the Feynman’s
diagrammatic approach and become significant for finite matrix dimension, and
may provide a test for the AdS/CFT conjecture [11]. We also glanced over sym-
metric space classification of random matrix ensembles [13], and conformal field
theory techniques used in the solving matrix models that also somewhat explain
the universality of matrix models [12]. We hope to explore further such exciting
properties and applications of random matrices and review them in the next stage
of our report.

18



Bibliography

[1] Guhr T., Müller-Groeling A., Weidenmüller H. (1997). Random Matrix The-
ories in Quantum Physics: Common Concepts. arXiv:cond-mat/9707301v1

[2] Alexandrov S., Kazakov V., Kostov I. (2003). 2D String Theory as Normal
Matrix Model. arXiv:hep-th/0302106v1

[3] Mukhi S. (2006). Random Matrix Models of String Theory. Mathematics of
String Theory (MOST) Workshop ANU Canberra, July 13-17 2006

[4] Francesco P., Ginsparg P., Zinn-Justin J. (1993). 2D Gravity and Random
Matrices. arXiv:hep-th/9306153v2

[5] Marino M. (2011). Lectures on Localization and Matrix Models in Supersym-
metric Chern-Simons-Matter Theories. arXiv:hep-th/1104.0783v5

[6] Aganagic M., Klemm A., Marino M., Vafa C. (2002). Matrix Model as a
Mirror of Chern-Simons Theory. arXiv:hep-th/0211098v1

[7] Kapustin A., Willett B., Yaakov I. (2009). Exact Results for Wilson
Loops in Superconformal Chern-Simons Theories with Matter. arXiv:hep-
th/0909.4559v4

[8] Marino M. (2004). Les Houches Lectures on Matrix Models and Topological
Strings. arXiv:hep-th/0410165v3

[9] Halmagyi N., Yasnov V. (2003). The Spectral Curve of the Lens Space Matrix
Model. arXiv:hep-th/0311117v3

[10] Drukker N., Marino M., Putrov P. (2010). From Weak to Strong Coupling in
ABJM theory. arXiv:hep-th/1007.3837v4

[11] Fuji H., Hirano S., Moriyami S. (2011). Summing Up All Genus Free Energy
of ABJM Matrix Model. arXiv:hep-th/1106.4631v2

19



[12] Kostov I. (1999). Conformal Field Theory Techniques in Random Matrix Mod-
els. arXiv:hep-th/9907060v1

[13] Caselle M., Magnea U. (2004). Random Matrix Theory and Symmetric Spaces.
arXiv:cond-mat/0304363v2

20


