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Introduction

I An associative memory is a system which stores a mapping of
N-dimensional input vectors to N0-dimensional output vectors

I The system should be capable of implementing all possible
mappings.It’s effectiveness depends on

I Capacity
I Learning
I Generalization

I For binary outputs, capacity is given by C ≤ D log2 K
N0

,where D is the
number of independent variables and K is the separate values each
can assume.



Linear discriminant functions

I It maps an input vector to +1 or -1 by

y = sgn{w0 + w1x1 + w2x2 + · · ·+ wNxN}

I This function dichotomizes the set of input vectors (partitions into
two space, separated by a hyperplane).

I All the dichotomies are possible only when the input vectors are less
than N+1, so we get the capacity as : C = N + 1

I Since this capacity is low, we expand the vectors to their r th order to
get L =

(
N+r
r

)
number of independent terms.

zj(x) = xn1p1(j)x
n2
p2(j)
· · · xnrpr (j)

y = sgn{w0 + w1z1(x) + w2z2(x) + · · ·+ wLzL(x)}

Here the number of weights used to describe the mapping is L+1,
and so is the capacity of the memory.



Binary Vectors

I There are 2N non redundant terms in a complete polynomial
expansion of a binary vector. Which is equal to the total number of
possible input vectors. hence, we can say that this memory is
capable of implementing all the possible mappings.

I The orthogonalization property of the full expansion is interesting
because it shows that higher order memories provide a complete
framework that takes us from the simplest ”neuron”, the linear
discriminant function to the full capacity of a Boolean truth table.



R th order expansions

I For a large N, the full expansion is too long. Hence, we only take r th

order expansions which gives us large enough capacity to learn.

I Angle between two expanded vectors is given by

cos θr ≈ 2
√
rρ

where ρ is n/N and n is the Hamming distance between the original
input vector.



Training

Wlj1j2···jr =
M∑

m=1

ym
l xmj1x

m
j2 · · · xmjr

yl = sgn{N rY n
l +

∑
m 6=n

ym
l (

N∑
j=1

xmj xnj )r + w0
l }

= sgn{N ryn
l + nl(x

n)}

I The first term is identified with the desired signal and the second
term with the noise.Thus we can calculate the signal to noise ratio.

SNR ≈
(
N r2r r !

M(2r)!

) 1
2

I Equating the signal to noise ratio of linear and r th order we get the
r th order capacity as

Mr

M1
= N r−1 2r r !

(2r)!



Optical Implementations of Quadratic associative
Memories

I The holographic process consists of recording and reconstruction. In
the recording step, the interference between the reference plane
wave and the wave originating from object ”A” is recorded on a
photographic plate. This plate illuminated with thereference fied, to
give a virtual projection of ”A”.

I The weight of each interconnection is given by the interference
pattern

I The volume hologram is similar, but it records the pattern on a three
dimensional medium.



Volume Hologram Systems

I To implement the quadratic memory, volume holograms are used to
connect the input and output patterns. They are implementations of
the weight tensor.

I N2 → N schemes use the weight tensor

Wijk =
M∑

m=1

ym
i xmj xmk N2

I This allows for error driven learning where interconnections are
developed by an iterative training process.



Volume Hologram Systems

I N → N2 is the inverse of the one described previously.

I Input dependent weights enable quadratic memories in an M → N
scheme

wij =
N∑

k=1

wijkxk



Planar Hologram Systems

I They do not have the extra dimension to directly implement the
weight tensor, nevertheless they can be used in a similar way.

I The first part of the system is a multichannel correlator, which
correlates input vectors to the stored vectors. The correlation
functions are then sampled at the slit and squared by the SLM.
Second hologram produces the weighted of vectors, which are
Fourier transformed to obtain output vectors.

I One can incorporate shift invariance by lengthening the input SLM
and removing slits.
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