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Abstract

The theory of topology has found many exciting applications in physical
theories in the past century. It provides highly generalized methods of ana-
lyzing physical characteristics of a system, such as defects and singularities.
In this report we lay out the basics of topology and differential geometry,
which has a much larger history of applications in physics, illustrating facts
with examples. We then present the analysis of Dirac’s quantization rule for
magnetic monopoles, which was very influential in demonstrating applica-
tions of topological methods in physics, at a time when they were remotely
separate. We also see an example of topological defects in nematic liquid
crystals.
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Chapter 1

Introduction

This report is based on the study of initial chapters from the book ’Geometry,
Topology and Physics’ by M. Nakahara [1] as a part of the undergraduate seminar.

In physics, many systems have such symmetries that allow us to identify groups
of points as equivalent. In topology, we incorporate such symmetries in the struc-
ture of the space the system resides in. The new space is the quotient space under
the made identifications. In Chapter 2, we describe an important theorem from
group theory which allows us to identify the quotient spaces as the images of
certain group mappings, and helps us better understand their structures [1].

In Chapter 3, we describe some of the general topological spaces and their prop-
erties [1]. We study the relations among the subspaces of a topological space under
operations by the boundary operators. Although applications of such relations are
not discussed in this report, they harmonize well with the differential analysis of
space under the De Rham cohomology. We also see some properties of mappings
from closed contours in one topological space to another. Such mappings are very
useful in physics in understanding potentials in a closed region by only considering
loops enclosing the region [2].

Two very exciting examples of such analysis are presented in Chapter 5, where
we analyze the properties of systems due to singularities in the potentials (order
parameters). Specifically we consider the Dirac monopole [1, 3, 4, 5, 6] where
the singularity in the electro-magnetic potential is introduced upon assuming the
existence of a magnetic monopole, and the line defects in the nematic liquid crystals
[1, 7] where molecular orientations in the crystal characterize it into one of two
classes with high transition energy.

When we consider such generalized topological spaces as choices for physical
descriptions, we must be able to assign meanings to the important physical pa-
rameters such as positions and velocities. In Chapter 4, we develop the formal
definitions of vector and tensor fields on smooth topological spaces, their transfor-
mations under change of basis, and the actions of derivative operators [1, 8].
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Chapter 2

Algebra

Let a map φ : G1 → G2 be a group homomorphism, then the kernel of the map is
an equivalence class and the quotient group G1/ker(φ) is isomorphic to the im(φ),
where G1/ker(φ) is the group of equivalence classes in which a ◦ n ∼ a where
a ∈ G1 and n ∈ ker(φ).

Modular Arithmetic φ(5n + a) = a for a ∈ {0, 1, 2, 3, 4} and n ∈ Z, i.e.
φ(n) = n (mod 5), is a homomorphism. The quotient group consists of the equiv-
alence classes [a] such that [a+ 5n] = [a] + [5n] = [a] for , as [5n] = [0].

Sphere If the boundary points S1 of a disc D2 are identified as equivalent,
we get a sphere S2. That is, S2 ∼= D2/S1.
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Chapter 3

Topology

3.1 Homeomorphism

Homeomorphism is a continuous map from one topological space to another, with
a continuous inverse. That is, two spaces are homeomorphic if they can be trans-
formed continuously to one another without cutting or pasting. Homeomorphic
spaces are topologically equivalent. Some of the topological invariants include
connectedness, compactness and Euler characteristic which for a polygon is the
(number of vertices) - (number of edges) + (number of faces).

Sphere The sphere S2 is not homeomorphic to any open subset of R2 as the
former is compact i.e. closed and bounded, while the latter is not. However, a
sphere with a hole is homeomorphic to a disc D2.

3.2 Homology

By Cr(K), let us denote the free abelian group of all r-dimentional oriented volume
elements of a topological space K such that c =

∑
i ciσi ∈ Cr(K) if σi ∈ Cr(K),

ci ∈ Z. For r = 1 it can be all curves, for r = 2 it can be all surfaces, and so on.
By Zr(K), we mean group of all elements of Cr(K) that are r-cycles i.e. they do
not have a boundary, which can happen if the boundary elements add up to 0. For
example, closed loops. For a triangle the boundary is given by

∂1[(p1p2) + (p2p3) + (p3p1)] = (p1 − p2) + (p2 − p3) + (p3 − p1) = 0.

where pi is a point and (pipj) is an oriented line segment.
By Br(K) we mean group of all elements of Cr(K) that are boundaries of Cr+1(K).
It can be shown that Br(K) ⊆ Zr(K).
Then the homology group is Hr(K) ≡ Zr(K)/Br(K), which is the group of r-cycles

8



which are not themselves the boundaries of some element in Cr+1.

Circle Let K = S1 i.e. a circle. Z1(K) is the free group generated by the
closed loops which in this case only consist of the circle. Hence Z1(K) ∼= Z.
However, C2(K) is empty and hence so is B1(K). Therefore,

H1(K) ∼= Z1(K)/B1(K) ∼= Z/{0} ∼= Z.

One isomorphism map from H1 to Z can be the winding number.

General surface Let K be the most general orientable two-dimensional sur-
face consisting of a 2-sphere with h handles and q holes.
Each handle can be thought of as a torus (T 2) attached to the rest of the object.
The first homology group of the torus is generated by two cycles i.eH1(T

2) ∼= Z⊕Z.
Each hole adds one cycle to the first homology group, which can be seen by taking
a loop around the hole. However, adding one loop from around each hole gives a
contractible loop and is ∼ 0. Therefore,

H1(K) ∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸
2h

⊕Z⊕ · · · ⊕ Z︸ ︷︷ ︸
q−1

Generators of first homology group of torus of genus 3

3.3 Homotopy

Two loops in a topological space are said to be homotopic if one can be continuously
deformed into another. The product of two loops having a common point is the
loop defined as: start from the common point, go around the first loop once and
then the second loop once, reaching back to the starting point. Homotopy is
an equivalence relation and the equivalence classes of loops hence formed in the
topological space is the fundamental homotopy group of the space, denoted by
π1(K). If the elements of this group commute, this group is isomorphic to the first
homology group H1(K).
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Chapter 4

Differential Geometry

4.1 Manifolds

It is not always possible to define a coordinate system on a topological space such
that it is continuous everywhere and all close points have nearby coordinates. In
such cases we use multiple coordinate charts, each defines coordinates locally on
open subsets of space such that at points where more than one charts are defined,
map from one to another should be smooth. A topological space together with set
of charts covering the space, collectively called an atlas, is a manifold.

For example, if we use polar coordinates for sphere, we have a discontinuity as
the point (0, π/2) is very close to the point (2π − ε, π/2) for small ε, whereas, the
coordinates are far. If we use stereographic coordinates from north pole, we get
arbitrarily large coordinates for points close to north pole, they do not have close
coordinate representations. Charts are homeomorphisms from open subsets of M
to open subsets of Rm, and being able to represent the sphere with a single chart
would mean that sphere is homeomorphic to an open subset of R2, which is not
true. Hence we need atleast two charts to cover a sphere. We will see an example
of sphere manifold wen we study Dirac monopoles.

4.2 Vectors

A smooth curve in a space M is a smooth map c : R→M . Given a curve c and a
function f : M → R, we can compose them and then differentiate to get

df(c(t))

dt
=
dxµ(c(t))

dt

∂f

∂xµ
= Xµ ∂f

∂xµ
≡ X[f ]
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where xµ(p) gives the coordinate of point p in M and Xµ ≡ dxµ(c(t))/dt. The
map

T = Xµ ∂

∂xµ
: f → Tf =

df

dt
|t=0, where c(0) = p

is a tangent vector at p with ∂/∂xµ as the coordinate basis. The space of tangent
vectors at point p is the tangent space TpM . Under change of coordinate system,
the components will transform as

T = T µ
∂

∂xµ
= T ν

∂

∂xν
⇒ T ν =

∂xν

∂xµ
T µ.

This transformation defines a contravariant vector.

The differential 1-form of a function, f : M → R, is a dual to the tangent
vector defined by

<df, T >= Tf = df/dt where <,> is a bilinear map

The space dual to tangent space TpM is the cotangent space T ∗pM . dxµ gives a
basis for T ∗pM dual to the coordinate basis of vector

<dxµ,
∂

∂xµ
> = δµν

Under change of coordinate system, the components of the dual vector ωµdx
µ

transform as a covariant vector

ων = ωµ
∂xµ
∂xν

A map f : M → N between two spaces induces a map f∗ called the differential
map f∗ : TpM → Tf(p)M , such that

(f∗V )[g] ≡ V [gf ]

Another induced map is the pullback map f ∗ : T ∗f(p)N → T ∗pM defined by

<f ∗ω, V > = <ω, f∗V >

Mechanics In a configuration space Q, where qi are local coordinates and
vi = fqi/dt = q̇i is the velocity of the dynamical trajectory q(t), a Lagrangian
L(qi, vj) is a function on the tangent bundle L : TQ→ R. The tangent bundle is
mapped to its cotangent bundle T ∗Q by the Legendre transformation via

pi =
∂L

∂vi

11



The fact that the momentum lies in the cotangent space can be seen from its
covariant transformation under change of coordinate basis. If the above map is
invertible, which can happen if the Lagrangian is a convex function of the vi,
we obtain an isomorphism between tangent and cotangent bundle, which is very
similar to the Wave-Particle Duality where the particle velocity can be obtained
from the wave vector. The Legendre transform of the Lagrangian with respect to
fibre coordinates is the Hamiltonian

H(qi, pj) = piv
j(pk)− L(qi, vj(pk))

Since, H and L are invariant under coordinate basis change, we see another reason
why momentum should be dual to the position.

4.3 Tensors

A tensor of type (q,r) is a multi-linear map :
⊗q T ∗pM

⊗r TpM → R, written in
terms of the basis as

Ω = Ωµ1...µq
ν1...νr

∂

∂xµ1
. . .

∂

∂xµq
dxν1 . . . dxνr

Ωµ1...µq
ν1...νr

= Ω(dxµ1 , . . . , dxµq ,
∂

∂xν1
, . . . ,

∂

∂xνr
)

A tensor of type (0,r) is a covariant tensor of rank r. A continuous assignment
of an element of =qr,pM at each point p ∈ M is a tensor field, where =qr,pM is the
set of type (q,r) tensors at point p. If (q, r) = (0, 1) it is a co-vector field, and if
(1,0) it is a vector field.

4.4 Differential Forms

A differential q-form is an antisymmetric tensor of type (0,q). The vector space of
q-forms acting on

⊗p TpM is denoted by Λq(TpM). Dim Λq(TpM) =
(
n
q

)
, where n

is the dimensions of TpM . Λ0(TpM) = R by convention.

The exterior product is an antisymmetric tensor product ∧ : Λq(TpM) ×
Λr(TpM)→ Λq+r(TpM) such that

(ω ∧ ξ)(V1, . . . , Vq+r) =
1

q!r!

∑
P∈Sq+r

sgn(P )ω(VP (1), . . . , VP (q))ξ(VP (q+1), . . . , VP (q+r))
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where Vi ∈ TpM . The exterior product of r one-forms is

dxµ1 ∧ dxµ2 · · · ∧ dxµr =
∑
P∈Sr

sgn(P )dxµ1 ⊗ dxµ2 · · · ⊗ dxµr

For example, dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ.

The direst sum of vector spaces Λq(TpM),
⊕n

q=0 Λq(TpM), is denoted by Λ∗(TpM),
and along with the exterior product forms an algebra.

The exterior derivative d is a map Λr(TpM)→ Λr+1(TpM) whose action on an
r-form

ω =
1

r!
ωµ1...µrdx

µ1 ∧ · · · ∧ dxµr

where ωµ1...µr is totally antisymmetric, is given by

dω =
1

r!

(
∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµr

The action of d2 on ω is

d2ω =
1

r!

(
∂2

∂xλ∂xν
ωµ1...µr

)
dxλ ∧ dxν ∧ dxµ1 ∧ · · · ∧ dxµr = 0

as ∂2ωµ1...µr/∂x
λ∂xν is symmetric with respect to λ and ν while dxλ ∧ dxν is anti-

symmetric.

Electromagnetic potential A = (φ,A) is a one-form, A = Aµdx
µ. The

Electromagnetic tensor F is defined by F = dA.

F =
1

2
Fµνdx

µ ∧ dxν = −Eidt ∧ dxi +
1

2
εijkBkdx

i ∧ dxj

where

E = −∇φ− ∂

∂x0
A and B = ∇×A

Using the identity d2 = 0 we get two of the Maxwell’s Equations,

∇ ·B = 0 and ∂B/∂t = −∇× E

13



Chapter 5

Topological Defects

5.1 Gauge theory

From the identity d2ω = 0, we see that the potential Ã = A + dΛ leads to the
same electromagnetic tensor as A. Hence, we expect the trajectory of the particle
to remain same under such gauge transformation. For the time-independent elec-
tromagnetic fields, dΛ can be replaced by ∇Λ.

The Hamiltonian for the system is given by

H =
1

2m

(
p− eA

c

)2

+ eφ

and the kinematical momentum is given by

m
dxi
dt

= m
[xi, H]

ι~
= pi − eAi/c

Therefore, if the states change as |ψ〉 → |ψ̃〉 under gauge transformation, we
expect

〈ψ|x|ψ〉 = 〈ψ̃|x|ψ̃〉

〈ψ|
(

p− eA

c

)
|ψ〉 = 〈ψ̃|

(
p− eÃ

c

)
|ψ̃〉

〈ψ|ψ〉 = 〈ψ̃|ψ̃〉

These conditions are satisfied by the transformation

|ψ̃〉 = exp

[
ιeΛ(x)

~c

]
|ψ〉

validity of which can be verified by comparing the original with the transformed
Schrodinger equation.
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5.2 Dirac Monopole

Although magnetic monopoles have not yet been found and Quantum Mechanics
does not predict their existence, Dirac observed that if monopoles were to exist,
it would lead to quantization of magnetic and electric charges.

Consider time-independent electromagnetic fields. In this case, the curvature
tensor equals the magnetic field i.e.

F|R3 = B =
1

2
Fijdx

idxj.

Dirac monopole introduces a singularity and hence, to describe it we use two
coordinate patches U± to describe the z > −ε and z < ε regions of R3 − {0} with
overlap region U+∩U− effectively equal to the x-y plane with z=0 minus the origin.
We define the vector potentials in the two regions as

A± =
g

r

1

z ± r
(xdy − ydx) = g(±1− cos θ)dφ

The two potentials are related by the gauge transformation

A+ = A− + 2g d tan−1(y/x) = A− + 2g dφ

and hence give the same field. A+ and A− have the Dirac string singularities at
θ = π and θ = 0 respectively, however these strings lie outside the coordinate
patches their respective potentials are defined in, and we get a genuine singularity
only at r = 0.

Accordingly the gauge is given by

Λ = 2gφ

which we see is singular at θ = 0, 2π. But we use the transformation only at θ = π
and hence the singularities do not show up in analysis.

The curvature of A is given by

F = g sin θ dθ ∧ dφ =
g

2r3
εijkx

i dxj ∧ dxk

Hence the magnetic field is given by

B =
gx

r3

and the flux is

Φ =

∮
S

B · dS = 4πg

15



In analogy with electric charge, g can be identified as a measure of magnetic charge.
For this gauge, the wave-functions transform as

|ψ+〉 = exp

[
ιeΛ(x)

~c

]
|ψ−〉

We require the wave-function to be single valued as we go from φ = 0 to φ = 2π
along the equatior, which gives us the Dirac quantization condition

2eg

hc
= n

We see that at the equator, the transition function is of the form eιnφ, and
hence maps the equator S1 to U(1), the integer n characterizing the fundamental
homotopy group π1(U(1)) = Z.

An interesting point in this analysis is that the quantization is not due to the
discreteness of the spectrum of an operator in Hilbert space but rather due to
topological considerations.

5.3 Defects in Nematic Liquid Crystals

The molecules of nematic liquid crystals are like rods with heads and tails. But
they possess inversion symmetry and hence the orientation of a molecule can be
described by a point on a sphere with antipodal points identified, i.e the real pro-
jective space RP 2. The map n(r) : R3 → RP 2, which describes the configuration
at each point in the crystal space is called the texture.

Loops in RP 2. (a) α is a trivial loop while the loop β cannot be shrunk to a point. (b)
β ? β is continuously shrunk to a point.

Line Defects We see from the figure that π1(RP 2) ∼= Z2 = {0, 1}. Therefore,
there are two kinds of line defects in nematic liquid crystals, one can be con-
tinuously transformed into uniform configuration while the other cannot. More
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specifically, we take a loop γ around a line separated from the singular region
by few molecular lengths so that the texture is well defined along the loop. The
function n(r) maps γ to some closed contour τ in RP 2. τ may be of two types:
(i) it starts and ends at the same point (for example, a circle) or, (ii) it connects
the diametrically opposite points of S2 which are equivalent in RP 2 = S2/Z2.
Contours of type (i) can be shrunk to a point, while contours of type (ii) cannot
be, as shown in the part (a) of above figure. The latter represent stable vortices.
They result from spontaneous symmetry breakdown and represent deviations from
minimum energy configurations, contributing significantly to the gradient energy
which makes their transformation into uniform configuration energetically almost
impossible. In nematic liquid crystals it requires destruction of the nematic order
in the whole half plane ending at the line. Two vortices of same type may however
be deformed into one another with some expenditure of energy.

(a) Stable Vortex (b) Fictitious Vortex
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